• 欢迎访问搞代码网站,推荐使用最新版火狐浏览器和Chrome浏览器访问本网站!
  • 如果您觉得本站非常有看点,那么赶紧使用Ctrl+D 收藏搞代码吧

对numpy中shape的深入理解

python 搞代码 4年前 (2022-01-08) 44次浏览 已收录 0个评论

今天小编就为大家分享一篇对numpy中shape的深入理解,具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧

环境:Windows, Python2.7

一维情况:

 <span style="font-size:14px">>>> import numpy as np >>> a = np.array([2,3,33]) >>> a array([ 2 3 33 ]) >>> print a [ 2 3 33 ] >>> a.shape (3, )</span>

一维情况中array创建的可以看做list(或一维数组),创建时用()和[ ]都可以,多维也一样,两种方法创建后的输出显示结果也相同,这里使用[ ]进行创建

输出a的shape会显示一个参数,就是这个list中元素个数

创建时也可以直接使用np.zeros([1]),这样会创建全0的list,或者np.ones([1]),不需要我们输入数据,见下图:

 <span style="font-size:14px">>>> a = np.zeros([1]) >>> b = np.ones([1]) >>> print a [ 0. ] >>> print b [ 1. ]</span>

二维情况:

 <span style="font-size:14px">>>> a = np.array([[2,2,2],[3,3,3]]) >>> print a [[ 2 2 2 ] [ 3 3 3 ]] >>> a.shape (2, 3)</span>

二维情况中array创建的可以看做二维数组(矩阵),注意创建时需要使用2个[ ],输出a的shape显示的(2,3)相当于有2行,每行3个数,使用np.ones创建结果如下:

>>> a = np.ones([2, 3]) >>> print a [[ 1. 1. 1. ] [ 1. 1. 1. ]]

多维情况:

多维情况统一使用np.ones进行创建,先看三维情况:

 <span style="font-size:14px">>>> a = np.ones([1,1,1]) >>> print a [[[ 1.]]] >>> a = np.ones([1,1,2]) >>> print a [[[ 1. 1.]]] >>> a = np.ones([1,2,1]) >>> print a [[[ 1.] [ 1.]]] >>> a = np.ones([2,1,1]) >>> print a [[[ 1.]] [[ 1.]]]</span>

从上面的代码可以看出,三维情况创建时后面2个参数可以看做是创建二维数组,第1个参数看做创建的二维数组的个数,所以创建时输入的参数为2,3,2时,就相当于创建了2个3行2列的二维数组,如下:

 <span style="font-size:14px">>>> a = np.ones([2,3,2]) >>> print a [[[ 1. 1.] [ 1. 1.] [ 1. 1.]] [[ 1. 1.] [ 1. 1.] [ 1. 1.]]]</span>

然后看四维情况:

 <span style="font-size:14px">>>> a = np.ones([1,1,1,1]) >>> print a [[[[ 1.]]]] >>> a = np.ones([1,1,1,2]) >>> print a [[[[ 1. 1.]]]] >>> a = np.ones([1,1,2,1]) >>> print a [[[[ 1.] [ 1.]]]] >>> a = np.ones([1,2,1,1]) >>> print a [[[[ 1.]] [[ 1.]]]] >>> a = np.ones([2,1,1,1]) >>> print a [[[[ 1.]]] [[[ 1.]]]]</span>

从上面代码可以看出:四维时将第一个参数设置为2和第二个参数设置为2时,输出结果中间的空行数量不同,我把它理解成先创建1行1列的二维数组[[ 1. ]],然后按照第2个参数打包这样的二维数组,如果第二个参数是2,则打包2个2维数组变成[[[ 1. ]],[[ 1. ]]](小包),然后按照第1个参数再打包这样的包,如果第一个参数是2,则变成[[[[ 1. ]], [[ 1. ]]], [[[ 1. ]], [[ 1. ]]]](大包),就是下面的结果:

 <span style="font-size:14px">>>> a = np.ones([2,2,1,1]) >>> print a [[[[ 1.]] [[ 1.]]] [[[ 1.]] [[ 1.]]]]</span>

四维以上的结果也是这么理解~输出中区分参数用空行~

然后来看一下特定输出:

 >>> import numpy as np >>> m = np.ones([2,3,2,3]) >>> print m [[[[ 1. 1. 1.] [ 1. 1. 1.]] [[ 1. 1. 1.] [ 1. 1. 1.]] [[ 1. 1. 1.] [ 1. 1. 1.]]] [[[ 1. 1. 1.] [ 1. 1. 1.]] [[ 1. 1. 1.] [ 1. 1. 1.]] [[ 1. 1. 1.] [ 1. 1. 1.]]]] >>> print m[1,:,:,:] [[[ 1. 1. 1.] [ 1. 1. 1.]] [[ 1. 1. 1.] [ 1. 1. 1.]] [[ 1. 1. 1.] [ 1. 1. 1.]]] >>> print m[:,1,:,:] [[[ 1. 1. 1.] [ 1. 1. 1.]] [[ 1. 1. 1.] [ 1. 1. 1.]]] >>> print m[:,:,1,:] [[[ 1. 1. 1.] [ 1. 1. 1.] [ 1. 1. 1.]] [[ 1. 1. 1.] [ 1. 1. 1.] [ 1. 1. 1.]]] >>> print m[:,:,:,1] [[[ 1. 1.] [ 1. 1.] [ 1. 1.]]<strong style="color:transparent">来源gao@daima#com搞(%代@#码@网</strong> [[ 1. 1.] [ 1. 1.] [ 1. 1.]]]

前面print m很好理解~

然后print m[1,:,:,:],:代表默认值(就是一开始你输入时指定的值),这句代码相当于输出2个包中的第1个包(从0开始计数),这个包里面有3个小包,小包里面是2*3的二维数组,所以结果就是上面的~

然后print m[:,1,:,:],相当于输出2个大包,每个大包输出第1个小包,小包里面是2*3的二维数组

然后print m[:,:,1,:],相当于输出2个大包,每个大包输出3个小包,小包里面是二维数组的第1行

然后print m[:,:,:,1],相当于输出2个大包,每个大包输出3个小包,小包里面是1*2的二维数组

其他结果可以自己去试试~

总结:采用np.array()创建时需要几个维度就要用几个[ ]括起来,这种创建方式要给定数据;采用np.ones()或np.zeros()创建分别产生全1或全0的数据,用a.shape会输出你创建时的输入,创建时输入了几个维度输出就会用几个[ ]括起来,shape的返回值是一个元组,里面每个数字表示每一维的长度

以上就是对numpy中shape的深入理解的详细内容,更多请关注gaodaima搞代码网其它相关文章!


搞代码网(gaodaima.com)提供的所有资源部分来自互联网,如果有侵犯您的版权或其他权益,请说明详细缘由并提供版权或权益证明然后发送到邮箱[email protected],我们会在看到邮件的第一时间内为您处理,或直接联系QQ:872152909。本网站采用BY-NC-SA协议进行授权
转载请注明原文链接:对numpy中shape的深入理解

喜欢 (0)
[搞代码]
分享 (0)
发表我的评论
取消评论

表情 贴图 加粗 删除线 居中 斜体 签到

Hi,您需要填写昵称和邮箱!

  • 昵称 (必填)
  • 邮箱 (必填)
  • 网址