• 欢迎访问搞代码网站,推荐使用最新版火狐浏览器和Chrome浏览器访问本网站!
  • 如果您觉得本站非常有看点,那么赶紧使用Ctrl+D 收藏搞代码吧

TensorFlow tf.nn.max_pool实现池化操作方式

python 搞代码 4年前 (2022-01-08) 21次浏览 已收录 0个评论

今天小编就为大家分享一篇TensorFlow tf.nn.max_pool实现池化操作方式,具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧

max pooling是CNN当中的最大值池化操作,其实用法和卷积很类似

有些地方可以从卷积去参考【TensorFlow】 tf.nn.conv2d实现卷积的方式

tf.nn.max_pool(value, ksize, strides, padding, name=None)

参数是四个,和卷积很类似:

第一个参数value:需要池化的输入,一般池化层接在卷积层后面,所以输入通常是feature map,依然是[batch, height, width, channels]这样的shape

第二个参数ksize:池化窗口的大小,取一个四维向量,一般是[1, height, width, 1],因为我们不想在batch和channels上做池化,所以这两个维度设为了1

第三个参数strides:和卷积类似,窗口在每一个维度上滑动的步长,一般也是[1, stride,stride, 1]

第四个参数padding:和卷积类似,可以取’VALID’ 或者’SAME’

返回一个Tensor,类型不变,shape仍然是[batch, height, width, channels]这种形式

示例源码:

假设有这样一张图,双通道

第一个通道:

第二个通道:

用程序去做最大值池化:

 import tensorflow as tf a=tf.constant([ [[1.0,2.0,3.0,4.0], [5.0,6.0,7.0,8.0], [8.0,7.0,6.0,5.0], [4.0,3.0,2.0,1.0]], [[4.0,3.0,2.0,1.0]<strong style="color:transparent">来源gaodaima#com搞(代@码网</strong>, [8.0,7.0,6.0,5.0], [1.0,2.0,3.0,4.0], [5.0,6.0,7.0,8.0]] ]) a=tf.reshape(a,[1,4,4,2]) pooling=tf.nn.max_pool(a,[1,2,2,1],[1,1,1,1],padding='VALID') with tf.Session() as sess: print("image:") image=sess.run(a) print (image) print("reslut:") result=sess.run(pooling) print (result) 

这里步长为1,窗口大小2×2,输出结果:

 image: [[[[ 1. 2.] [ 3. 4.] [ 5. 6.] [ 7. 8.]] [[ 8. 7.] [ 6. 5.] [ 4. 3.] [ 2. 1.]] [[ 4. 3.] [ 2. 1.] [ 8. 7.] [ 6. 5.]] [[ 1. 2.] [ 3. 4.] [ 5. 6.] [ 7. 8.]]]] reslut: [[[[ 8. 7.] [ 6. 6.] [ 7. 8.]] [[ 8. 7.] [ 8. 7.] [ 8. 7.]] [[ 4. 4.] [ 8. 7.] [ 8. 8.]]]] 

池化后的图就是:

证明了程序的结果是正确的。

我们还可以改变步长

 pooling=tf.nn.max_pool(a,[1,2,2,1],[1,2,2,1],padding='VALID')

最后的result就变成:

 reslut: [[[[ 8. 7.] [ 7. 8.]] [[ 4. 4.] [ 8. 8.]]]]

以上就是TensorFlow tf.nn.max_pool实现池化操作方式的详细内容,更多请关注gaodaima搞代码网其它相关文章!


搞代码网(gaodaima.com)提供的所有资源部分来自互联网,如果有侵犯您的版权或其他权益,请说明详细缘由并提供版权或权益证明然后发送到邮箱[email protected],我们会在看到邮件的第一时间内为您处理,或直接联系QQ:872152909。本网站采用BY-NC-SA协议进行授权
转载请注明原文链接:TensorFlow tf.nn.max_pool实现池化操作方式

喜欢 (0)
[搞代码]
分享 (0)
发表我的评论
取消评论

表情 贴图 加粗 删除线 居中 斜体 签到

Hi,您需要填写昵称和邮箱!

  • 昵称 (必填)
  • 邮箱 (必填)
  • 网址