这篇文章主要介绍了Python用二分法求平方根的案例,具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧
我就废话不多说了,大家还是直接看代码吧~
def sq2(x,e): e = e #误差范围 low= 0 high = max(x,1.0) #处理大于0小于1的数 guess = (low + high) / 2.0 ctr = 1 while abs(guess**2 - x) > e and ctr<= 10<p style="color:transparent">来源gao!daima.com搞$代!码网</p>00: if guess**2 </div><p><strong>补充:数值计算方法:二分法求解方程的根(伪代码 python c/c++)</strong></p><p>数值计算方法:</p><h2>二分法求解方程的根</h2><p>伪代码</p><div class="gaodaimacode"><pre class="prettyprint linenums"> fun (input x) return x^2+x-6 newton (input a, input b, input e) //a是区间下界,b是区间上界,e是精确度 x <- (a + b) / 2 if abs(b - 1) <e: return x else: if fun(a) * fun(b) < 0: newton(a, x, e) newton(x, b, e)<pre></div><h2>c/c++:</h2><div class="gaodaimacode"><pre class="prettyprint linenums"> #include #include using namespace std; double fun (double x); double newton (double a, double b,double e); int main() { cout << newton(-5,0,0.5e-5); return 0; } double fun(double x) { return pow(x,2)+x-6; } double newton (double a, double b, double e) { double x; x = (a + b)/2; cout << x << endl; if ( abs(b-a) <e) return x; else if (fun(a)*fun(x) <0) return newton(a,x,e); else return newton(x,b,e); }
python:
def fun(x): return x ** 2 + x - 6 def newton(a,b,e): x = (a + b)/2.0 if abs(b-a) <e: return x else: if fun(a) * fun(x) < 0: newton(a, x, e) newton(x, b, print newton(-5, 0, 5e-5)
以上就是Python用二分法求平方根的案例的详细内容,更多请关注gaodaima搞代码网其它相关文章!