• 欢迎访问搞代码网站,推荐使用最新版火狐浏览器和Chrome浏览器访问本网站!
  • 如果您觉得本站非常有看点,那么赶紧使用Ctrl+D 收藏搞代码吧

python实现beta分布概率密度函数的方法

python 搞代码 4年前 (2022-01-08) 32次浏览 已收录 0个评论

今天小编就为大家分享一篇python实现beta分布概率密度函数的方法,具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧

如下所示:

 beta分布的最大特点是其多样性, 从下图可以看出, beta分布具有各种形态, 有U形, 类似正态分布的形状, 类似uniform分布的形状等, 正式这一特质使beta分布在共轭先验的计算中起到重要作用: import matplotlib.pyplot as plt import numpy as np from scipy import stats from matplotlib import style style.use('ggplot') params = [0.5, 1, 2, 3] x = np.linspace(0, 1, 100) f, ax = plt.subplots(len(params), len(params), sharex=True, sharey=True) for i in range(4): for j in range(4): alpha = params[i] beta = params[j] pdf = stats.beta(alpha, beta).pdf(x) ax[i, j].plot(x, pdf) ax[i, j].plot(0, 0, label='alpha={:3.2f}\nbeta={:3.2f}'.format(alpha, beta), alpha=0) plt.setp(ax[i, j], xticks=[0.0, 0.2, 0.4, 0.6, 0.8, 1.0], yticks=[0,2,4,6,8,10]) ax[i, j].legend(fontsize=10) ax[3, 0].set_xlabel('theta', fontsize=16) ax[0, 0].set_ylabel('pdf(theta)', font<strong style="color:transparent">来源gao@daima#com搞(%代@#码@网</strong>size=16) plt.suptitle('Beta PDF', fontsize=16) plt.tight_layout() plt.show() 

以上就是python实现beta分布概率密度函数的方法的详细内容,更多请关注gaodaima搞代码网其它相关文章!


搞代码网(gaodaima.com)提供的所有资源部分来自互联网,如果有侵犯您的版权或其他权益,请说明详细缘由并提供版权或权益证明然后发送到邮箱[email protected],我们会在看到邮件的第一时间内为您处理,或直接联系QQ:872152909。本网站采用BY-NC-SA协议进行授权
转载请注明原文链接:python实现beta分布概率密度函数的方法
喜欢 (0)
[搞代码]
分享 (0)
发表我的评论
取消评论

表情 贴图 加粗 删除线 居中 斜体 签到

Hi,您需要填写昵称和邮箱!

  • 昵称 (必填)
  • 邮箱 (必填)
  • 网址