• 欢迎访问搞代码网站,推荐使用最新版火狐浏览器和Chrome浏览器访问本网站!
  • 如果您觉得本站非常有看点,那么赶紧使用Ctrl+D 收藏搞代码吧

TensorFlow实现checkpoint文件转换为pb文件

python 搞代码 4年前 (2022-01-08) 20次浏览 已收录 0个评论

今天小编就为大家分享一篇TensorFlow实现checkpoint文件转换为pb文件,具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧

由于项目需要,需要将TensorFlow保存的模型从ckpt文件转换为pb文件。

 import os from tensorflow.python import pywrap_tensorflow from net2use import inception_resnet_v2_small#这里使用自己定义的模型函数即可 import tensorflow as tf if __name__=='__main__': pb_file = "./model/output.pb" ckpt_file = "./model/model.ckpt-652900" ''' 这里的节点名字可能跟设想的有出入,最直接的方法是直接输出ckpt中保存<em style="color:transparent">来源[email protected]搞@^&代*@码网</em>的节点名字,然后对应着找节点名字,具体的进入convert_variables_to_constants函数的实现中graph_util_impl.py,130行的函数:_assert_nodes_are_present 添加代码 print('在图中的节点是:') for din in name_to_node: print('{},在图中'.format(din)) 然后运行代码,若正确就会直接保存;若失败则会保存失败,找好输出节点的名字,在output_node_names 中添加就好 ''' output_node_names = ["embedding"] with tf.name_scope('input'): image = tf.placeholder(tf.float32,shape=(None,79,199,1),name='input_image') net, endpoints=inception_resnet_v2_small(image, is_training=False) embedding = tf.nn.l2_normalize(net,1,1e-10,name='embedding') config=tf.ConfigProto(allow_soft_placement=True) config.gpu_options.per_process_gpu_memory_fraction = 0.45 sess = tf.Session(config = config) saver = tf.train.Saver() saver.restore(sess, ckpt_file) print('read success') converted_graph_def = tf.graph_util.convert_variables_to_constants(sess, input_graph_def = sess.graph.as_graph_def(), output_node_names = output_node_names) with tf.gfile.GFile(pb_file, "wb") as f: f.write(converted_graph_def.SerializeToString()) print('保存成功')

以上就是TensorFlow实现checkpoint文件转换为pb文件的详细内容,更多请关注gaodaima搞代码网其它相关文章!


搞代码网(gaodaima.com)提供的所有资源部分来自互联网,如果有侵犯您的版权或其他权益,请说明详细缘由并提供版权或权益证明然后发送到邮箱[email protected],我们会在看到邮件的第一时间内为您处理,或直接联系QQ:872152909。本网站采用BY-NC-SA协议进行授权
转载请注明原文链接:TensorFlow实现checkpoint文件转换为pb文件
喜欢 (0)
[搞代码]
分享 (0)
发表我的评论
取消评论

表情 贴图 加粗 删除线 居中 斜体 签到

Hi,您需要填写昵称和邮箱!

  • 昵称 (必填)
  • 邮箱 (必填)
  • 网址