• 欢迎访问搞代码网站,推荐使用最新版火狐浏览器和Chrome浏览器访问本网站!
  • 如果您觉得本站非常有看点,那么赶紧使用Ctrl+D 收藏搞代码吧

Python实现word2Vec model过程解析

python 搞代码 4年前 (2022-01-08) 20次浏览 已收录 0个评论

这篇文章主要介绍了Python实现word2Vec model过程解析,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友可以参考下

这篇文章主要介绍了Python实现word2Vec model过程解析,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友可以参考下

 import gensim, loggin<strong style="color:transparent">来源gao@daima#com搞(%代@#码@网</strong>g, os logging.basicConfig(format='%(asctime)s : %(levelname)s : %(message)s', level=logging.INFO) import nltk corpus = nltk.corpus.brown.sents() fname = 'brown_skipgram.model' if os.path.exists(fname): # load the file if it has already been trained, to save repeating the slow training step below model = gensim.models.Word2Vec.load(fname) else: # can take a few minutes, grab a cuppa model = gensim.models.Word2Vec(corpus, size=100, min_count=5, workers=2, iter=50) model.save(fname) words = "woman women man girl boy green blue".split() for w1 in words: for w2 in words: print(w1, w2, model.similarity(w1, w2)) print(model.most_similar(positive=['woman', ''], topn=1)) print(model.similarity('woman', 'girl'))girl

在gensim模块中已经封装了13年提出的model–word2vec,所以我们直接开始建立模型

这是建立模型的过程,最后会出现saving Word2vec的语句,代表已经成功建立了模型

这是输入了 gorvement和news关键词后 所反馈的词语 — administration, 他们之间的相关性是0.508

当我在输入 women 和 man ,他们显示的相关性的0.638 ,已经是非常高的一个数字。

值得一提的是,我用的语料库是直接从nltk里的brown语料库。其中大概包括了一些新闻之类的数据。

大家如果感兴趣的话,可以自己建立该模型,通过传入不同的语料库,来calc 一些term的 相关性噢

以上就是Python实现word2Vec model过程解析的详细内容,更多请关注gaodaima搞代码网其它相关文章!


搞代码网(gaodaima.com)提供的所有资源部分来自互联网,如果有侵犯您的版权或其他权益,请说明详细缘由并提供版权或权益证明然后发送到邮箱[email protected],我们会在看到邮件的第一时间内为您处理,或直接联系QQ:872152909。本网站采用BY-NC-SA协议进行授权
转载请注明原文链接:Python实现word2Vec model过程解析

喜欢 (0)
[搞代码]
分享 (0)
发表我的评论
取消评论

表情 贴图 加粗 删除线 居中 斜体 签到

Hi,您需要填写昵称和邮箱!

  • 昵称 (必填)
  • 邮箱 (必填)
  • 网址