• 欢迎访问搞代码网站,推荐使用最新版火狐浏览器和Chrome浏览器访问本网站!
  • 如果您觉得本站非常有看点,那么赶紧使用Ctrl+D 收藏搞代码吧

浅谈pandas中shift和diff函数关系

python 搞代码 4年前 (2022-01-07) 22次浏览 已收录 0个评论

下面小编就为大家分享一篇浅谈pandas中shift和diff函数关系,具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧

通过?pandas.DataFrame.shift命令查看帮助文档

 Signature: pandas.DataFrame.shift(self, periods=1, freq=None, axis=0) Docstring: Shift index by desired number of periods with an optional time freq 

该函数主要的功能就是使数据框中的数据移动,若freq=None时,根据axis的设置,行索引数据保持不变,列索引数据可以在行上上下移动或在列上左右移动;若行索引为时间序列,则可以设置freq参数,根据periods和freq参数值组合,使行索引每次发生periods*freq偏移量滚动,列索引数据不会移动

① 对于DataFrame的行索引是日期型,行索引发生移动,列索引数据不变

 In [2]: import pandas as pd ...: import numpy as np ...: df = pd.DataFrame(np.arange(24).reshape(6,4),index=pd.date_range(start= ...: '20170101',periods=6),columns=['A','B','C','D']) ...: df ...: Out[2]: A  B  C  D 2017-01-01  0  1  2  3 2017-01-02  4  5  6  7 2017-01-03  8  9 10 11 2017-01-04 12 13 14 15 2017-01-05 16 17 18 19 2017-01-06 20 21 22 23 In [3]: df.shift(2,axis=0,freq='2D') Out[3]: A  B  C  D 2017-01-05  0  1  2  3 2017-01-06  4  5  6  7 2017-01-07  8  9 10 11 2017-01-08 12 13 14 15 2017-01-09 16 17 18 19 2017-01-10 20 21 22 23 In [4]: df.shift(2,axis=1,freq='2D') Out[4]: A  B  C  D 2017-01-05  0  1  2  3 2017-01-06  4  5  6  7 2017-01-07  8  9 10 11 2017-01-08 12 13 14 15 2017-01-09 16 17 18 19 2017-01-10 20 21 22 23 In [5]: df.shift(2,freq='2D') Out[5]: A  B  C  D 2017-01-<span style="color:transparent">来源gaodai#ma#com搞*!代#%^码网</span>05  0  1  2  3 2017-01-06  4  5  6  7 2017-01-07  8  9 10 11 2017-01-08 12 13 14 15 2017-01-09 16 17 18 19 2017-01-10 20 21 22 23

结论:对于时间索引而言,shift使时间索引发生移动,其他数据保存原样,且axis设置没有任何影响

② 对于DataFrame行索引为非时间序列,行索引数据保持不变,列索引数据发生移动

 In [6]: import pandas as pd ...: import numpy as np ...: df = pd.DataFrame(np.arange(24).reshape(6,4),index=['r1','r2','r3','r4' ...: ,'r5','r6'],columns=['A','B','C','D']) ...: df ...: Out[6]: A  B  C  D r1  0  1  2  3 r2  4  5  6  7 r3  8  9 10 11 r4 12 13 14 15 r5 16 17 18 19 r6 20 21 22 23 In [7]: df.shift(periods=2,axis=0) Out[7]: A   B   C   D r1  NaN  NaN  NaN  NaN r2  NaN  NaN  NaN  NaN r3  0.0  1.0  2.0  3.0 r4  4.0  5.0  6.0  7.0 r5  8.0  9.0 10.0 11.0 r6 12.0 13.0 14.0 15.0 In [8]: df.shift(periods=-2,axis=0) Out[8]: A   B   C   D r1  8.0  9.0 10.0 11.0 r2 12.0 13.0 14.0 15.0 r3 16.0 17.0 18.0 19.0 r4 20.0 21.0 22.0 23.0 r5  NaN  NaN  NaN  NaN r6  NaN  NaN  NaN  NaN In [9]: df.shift(periods=2,axis=1) Out[9]: A  B   C   D r1 NaN NaN  0.0  1.0 r2 NaN NaN  4.0  5.0 r3 NaN NaN  8.0  9.0 r4 NaN NaN 12.0 13.0 r5 NaN NaN 16.0 17.0 r6 NaN NaN 20.0 21.0 In [10]: df.shift(periods=-2,axis=1) Out[10]: A   B  C  D r1  2.0  3.0 NaN NaN r2  6.0  7.0 NaN NaN r3 10.0 11.0 NaN NaN r4 14.0 15.0 NaN NaN r5 18.0 19.0 NaN NaN r6 22.0 23.0 NaN NaN

通过?pandas.DataFrame.diff命令查看帮助文档,发现和shift函数形式一样

 Signature: pd.DataFrame.diff(self, periods=1, axis=0) Docstring: 1st discrete difference of object 

下面看看diff函数和shift函数之间的关系

 In [13]: df.diff(periods=2,axis=0) Out[13]: A  B  C  D r1 NaN NaN NaN NaN r2 NaN NaN NaN NaN r3 8.0 8.0 8.0 8.0 r4 8.0 8.0 8.0 8.0 r5 8.0 8.0 8.0 8.0 r6 8.0 8.0 8.0 8.0 In [14]: df -df.diff(periods=2,axis=0) Out[14]: A   B   C   D r1  NaN  NaN  NaN  NaN r2  NaN  NaN  NaN  NaN r3  0.0  1.0  2.0  3.0 r4  4.0  5.0  6.0  7.0 r5  8.0  9.0 10.0 11.0 r6 12.0 13.0 14.0 15.0 In [15]: df.shift(periods=2,axis=0) Out[15]: A   B   C   D r1  NaN  NaN  NaN  NaN r2  NaN  NaN  NaN  NaN r3  0.0  1.0  2.0  3.0 r4  4.0  5.0  6.0  7.0 r5  8.0  9.0 10.0 11.0 r6 12.0 13.0 14.0 15.0

以上就是浅谈pandas中shift和diff函数关系的详细内容,更多请关注gaodaima搞代码网其它相关文章!


搞代码网(gaodaima.com)提供的所有资源部分来自互联网,如果有侵犯您的版权或其他权益,请说明详细缘由并提供版权或权益证明然后发送到邮箱[email protected],我们会在看到邮件的第一时间内为您处理,或直接联系QQ:872152909。本网站采用BY-NC-SA协议进行授权
转载请注明原文链接:浅谈pandas中shift和diff函数关系

喜欢 (0)
[搞代码]
分享 (0)
发表我的评论
取消评论

表情 贴图 加粗 删除线 居中 斜体 签到

Hi,您需要填写昵称和邮箱!

  • 昵称 (必填)
  • 邮箱 (必填)
  • 网址