• 欢迎访问搞代码网站,推荐使用最新版火狐浏览器和Chrome浏览器访问本网站!
  • 如果您觉得本站非常有看点,那么赶紧使用Ctrl+D 收藏搞代码吧

PyTorch学习:动态图和静态图的例子

python 搞代码 4年前 (2022-01-07) 38次浏览 已收录 0个评论

今天小编就为大家分享一篇PyTorch学习:动态图和静态图的例子,具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧

动态图和静态图

目前神经网络框架分为静态图框架和动态图框架,PyTorch 和 TensorFlow、Caffe 等框架最大的区别就是他们拥有不同的计算图表现形式。 TensorFlow 使用静态图,这意味着我们先定义计算图,然后不断使用它,而在 PyTorch 中,每次都会重新构建一个新的计算图。通过这次课程,我们会了解静态图和动态图之间的优缺点。

对于使用者来说,两种形式的计算图有着非常大的区别,同时静态图和动态图都有他们各自的优点,比如动态图比较方便debug,使用者能够用任何他们喜欢的方式进行debug,同时非常直观,而静态图是通过先定义后运行的方式,之后再次运行的时候就不再需要重新构建计算图,所以速度会比动态图更快。

 # tensorflow import tensorflow as tf first_counter = tf.constant(0) second_counter = tf.constant(10) # tensorflow import tensorflow as tf first_counter = tf.constant(0) second_counter = tf.constant(10) def cond(first_counter, second_counter, *args): return first_c<em style="color:transparent">来源gao.dai.ma.com搞@代*码网</em>ounter <second_counter def body(first_counter, second_counter): first_counter=tf.add(first_counter, 2) second_counter 1) return first_counter, c1, c2=tf.while_loop(cond, body, [first_counter, second_counter]) with tf.session() as sess: counter_1_res, counter_2_res=sess.run([c1, c2]) print(counter_1_res) print(counter_2_res)<pre></div><p>可以看到 TensorFlow 需要将整个图构建成静态的,换句话说,每次运行的时候图都是一样的,是不能够改变的,所以不能直接使用 Python 的 while 循环语句,需要使用辅助函数 tf.while_loop 写成 TensorFlow 内部的形式</p><div class="gaodaimacode"><pre class="prettyprint linenums"> # pytorch import torch first_counter = torch.Tensor([0]) second_counter = torch.Tensor([10]) while (first_counter <second_counter)[0]: first_counter += 2 second_counter += 1 print(first_counter) print(second_counter)

可以看到 PyTorch 的写法跟 Python 的写法是完全一致的,没有任何额外的学习成本

以上就是PyTorch学习:动态图和静态图的例子的详细内容,更多请关注gaodaima搞代码网其它相关文章!


搞代码网(gaodaima.com)提供的所有资源部分来自互联网,如果有侵犯您的版权或其他权益,请说明详细缘由并提供版权或权益证明然后发送到邮箱[email protected],我们会在看到邮件的第一时间内为您处理,或直接联系QQ:872152909。本网站采用BY-NC-SA协议进行授权
转载请注明原文链接:PyTorch学习:动态图和静态图的例子
喜欢 (0)
[搞代码]
分享 (0)
发表我的评论
取消评论

表情 贴图 加粗 删除线 居中 斜体 签到

Hi,您需要填写昵称和邮箱!

  • 昵称 (必填)
  • 邮箱 (必填)
  • 网址