• 欢迎访问搞代码网站,推荐使用最新版火狐浏览器和Chrome浏览器访问本网站!
  • 如果您觉得本站非常有看点,那么赶紧使用Ctrl+D 收藏搞代码吧

浅谈numpy 函数里面的axis参数的含义

python 搞代码 4年前 (2022-01-07) 42次浏览 已收录 0个评论
文章目录[隐藏]

这篇文章主要介绍了numpy 函数里面的axis参数的含义,具有很好的参考来源gao@daima#com搞(%代@#码@网价值,希望对大家有所帮助。一起跟随小编过来看看吧

前言

numpy支持对矩阵和数组进行运算,因此很多numpy的很多运算都需要指定操作的维数参数axis(当然这些axis都有带默认值的),本博客以numpy.sum求和函数为例,具体分析axis参数不同取值下的含义。

先说结论

设 numpy.sum的输入矩阵为a. numpy.sum的返回矩阵为rst.

则矩阵a的形状为:sp=numpy.shape(a),例如sp=[m,n,p,q・・・]

rst的形状为将sp的第axis个元素设为1,即:

 sp'=sp sp'[axis]=1 numpy.shape(rst)==sp' 为真.

例如:axis=2,

如果a是矩阵则:

rst的形状应该为:[m,n,1,q・・・]

对于rst的元素rst[m’,n’,1,q’・・・]计算方法为:

【注意第axis轴】下标只能取1.

numpy.sum(a,axis=2)的内部计算其实为:

 for i in range(sp[axis]): rst[m'][n'][1][q'][・・・]+=a[m'][n'][i][q'][・・・]

结果上发现是第axis维变成1,计算过程其实是对第axis轴进行了遍历,让sp[axis]个元素合并成一个元素。

而如果a是一个array则:

rst的形状应该为:[m,n,q,・・・]

注意第axis维直接不见了

numpy.sum(a,axis=2)的内部计算

 for i in range(sp[axis]): rst[m'][n'][q'][・・・]+=a[m'][n'][i][q'][・・・]

结果上发现是第axis维变没了,计算过程其实是对第axis轴进行了遍历,让sp[axis]个元素合并成一个元素。

举例说明

简单点的

 import numpy as np a=np.mat([[1,2,3],[4,5,6]])

a的shape:

 print (np.shape(a))

输出:(2, 3)

计算:np.sum(a,axis=0)

 >>> s0=np.sum(a,axis=0) >>> s0 matrix([[5, 7, 9]])

按照【先说结论】的方法:

 axis=0

a的形状:(2,3)

所以rst的形状为:(1,3)

对于rst的每个元素p,q:

rst[p][q] 的 计算方法为(其中p只能等于0,q=0,1,2):

 for i in range(np.shape(a)[axis]): rst[0][q]+=a[i][q]

所以:

 rst[0][0]=a[0][0]+a[1][0]=1+4=5 rst[0][1]=a[0][1]+a[1][1]=2+5=7 rst[0][2]=a[0][2]+a[1][2]=3+6=9

所以rst就是[[5,7,9]]

计算 numpy.sum(a,axis=1)

a=[[1,2,3],[4,5,6]

 >>> s1=np.sum(a,axis=1) >>> s1 matrix([[ 6], [15]]) >>> np.shape(s1) (2, 1) >>> 

一样的分析方法:

按照【先说结论】的方法:

 axis=1

a的形状:(2,3)

所以rst的形状为:(2,1)

对于rst的每个元素p,q:

rst[p][q] 的 计算方法为(其中p=0,1 ,而q只能为0):

 for i in range(np.shape(a)[axis]): rst[p][0]+=a[p][i]

所以:

 rst[0][0]=a[0][0]+a[0][1]+a[0][2]=1+2+3=6 rst[1][0]=a[1][1]+a[1][1]+a[1][2]=4+5+6=15

所以rst就是[[6],[15]].

复杂点的:

 >>> b=np.array([[[1,2,3],[4,5,6],[7,8,9]]]) >>> b array([[[1, 2, 3], [4, 5, 6], [7, 8, 9]]]) >>> np.shape(b) (1, 3, 3)

b是1x3x3,是一个array.

那么np.sum(b,axis=2)等于多少呢?

标准答案:

 >>> print (np.sum(b,axis=2)) [[ 6 15 24]]

分析结果:

返回值应该为1×3形状的array,对于元素rst[p][q].

 rst[p][q]=a[p][q][0]+a[p][q][1]+a[p][q][2]

例如rst[0][1]=a[0][1][0]+a[0][1][1]+a[0][1][2]=8+5+6=15.

而np.sum(b,axis=2)的第一行第二个元素正是 15.

关于axis默认值

一般此类针对矩阵、array的函数都有一个axis参数,并且此默认为None.当axis为None使 表示运算是遍历矩阵(array)的每一个元素的,是逐元素的计算。

补充:python中某些函数axis参数的理解

总结为一句话:

设axis=i,则numpy沿着第i个下标变化的方向进行操作。

当然,这个i是从0开始数的,作为程序员的你一定不会搞错。

axis意为“轴”,它指定了函数在张量(矩阵、等等)上进行操作的方向。

例如有一个ndarray,名叫A,A.shape=(3,8,5,7)。

那么np.sum(A, axis=2)计算的结果的shape就是(3,8,7)。

假设这个shape是(3,8,7)的ndarray变量名为B,那么实际上:

B[i][j][k]=A[i][j][0][k]+A[i][j][1][k]+A[i][j][2][k]+A[i][j][3][k]+A[i][j][4][k]

以下代码你可以自己跑一下试试:

 import numpy as np A=np.random.randn(3,8,5,7) print("A.shape=",A.shape) B=np.sum(A,axis=2) print("B.shape=",B.shape) 

预期输出为:

A.shape= (3, 8, 5, 7)

B.shape= (3, 8, 7)

以上为个人经验,希望能给大家一个参考,也希望大家多多支持gaodaima搞代码网

以上就是浅谈numpy 函数里面的axis参数的含义的详细内容,更多请关注gaodaima搞代码网其它相关文章!


搞代码网(gaodaima.com)提供的所有资源部分来自互联网,如果有侵犯您的版权或其他权益,请说明详细缘由并提供版权或权益证明然后发送到邮箱[email protected],我们会在看到邮件的第一时间内为您处理,或直接联系QQ:872152909。本网站采用BY-NC-SA协议进行授权
转载请注明原文链接:浅谈numpy 函数里面的axis参数的含义

喜欢 (0)
[搞代码]
分享 (0)
发表我的评论
取消评论

表情 贴图 加粗 删除线 居中 斜体 签到

Hi,您需要填写昵称和邮箱!

  • 昵称 (必填)
  • 邮箱 (必填)
  • 网址