• 欢迎访问搞代码网站,推荐使用最新版火狐浏览器和Chrome浏览器访问本网站!
  • 如果您觉得本站非常有看点,那么赶紧使用Ctrl+D 收藏搞代码吧

PyTorch梯度裁剪避免训练loss nan的操作

python 搞代码 4年前 (2022-01-07) 23次浏览 已收录 0个评论
文章目录[隐藏]

这篇文章主要介绍了PyTorch梯度裁剪避免训练loss nan的操作,具有很好的参考价值,希望对大家有所帮助。如有错误或未考虑完全的地方,望不吝赐教

近来在训练检测网络的时候会出现loss为nan的情况,需要中断重新训练,会很麻烦。因而选择使用PyTorch提供的梯度裁剪库来对模型训练过程中的梯度范围进行限制,修改之后,不再出现loss为nan的情况。

PyTorch中采用torch.nn.utils.clip_grad_norm_来实现梯度裁剪,链接如下:

https://pytorch.org/docs/stable/_modules/torch/nn/utils/cli

来源gaodai.ma#com搞##代!^码网

p_grad.html

训练代码使用示例如下:

 from torch.nn.utils import clip_grad_norm_ outputs = model(data) loss= loss_fn(outputs, target) optimizer.zero_grad() loss.backward() # clip the grad clip_grad_norm_(model.parameters(), max_norm=20, norm_type=2) optimizer.step()

其中,max_norm为梯度的最大范数,也是梯度裁剪时主要设置的参数。

备注:网上有同学提醒在(强化学习)使用了梯度裁剪之后训练时间会大大增加。目前在我的检测网络训练中暂时还没有碰到这个问题,以后遇到再来更新。

补充:pytorch训练过程中出现nan的排查思路

1、最常见的就是出现了除0或者log0这种

看看代码中在这种操作的时候有没有加一个很小的数,但是这个数数量级要和运算的数的数量级要差很多。一般是1e-8。

2、在optim.step()之前裁剪梯度

 optim.zero_grad() loss.backward() nn.utils.clip_grad_norm(model.parameters, max_norm, norm_type=2) optim.step()

max_norm一般是1,3,5。

3、前面两条还不能解决nan的话

就按照下面的流程来判断。

 ... loss = model(input) # 1. 先看loss是不是nan,如果loss是nan,那么说明可能是在forward的过程中出现了第一条列举的除0或者log0的操作 assert torch.isnan(loss).sum() == 0, print(loss) optim.zero_grad() loss.backward() # 2. 如果loss不是nan,那么说明forward过程没问题,可能是梯度爆炸,所以用梯度裁剪试试 nn.utils.clip_grad_norm(model.parameters, max_norm, norm_type=2) # 3.1 在step之前,判断参数是不是nan, 如果不是判断step之后是不是nan assert torch.isnan(model.mu).sum() == 0, print(model.mu) optim.step() # 3.2 在step之后判断,参数和其梯度是不是nan,如果3.1不是nan,而3.2是nan, # 特别是梯度出现了Nan,考虑学习速率是否太大,调小学习速率或者换个优化器试试。 assert torch.isnan(model.mu).sum() == 0, print(model.mu) assert torch.isnan(model.mu.grad).sum() == 0, print(model.mu.grad) 

以上为个人经验,希望能给大家一个参考,也希望大家多多支持gaodaima搞代码网

以上就是PyTorch梯度裁剪避免训练loss nan的操作的详细内容,更多请关注gaodaima搞代码网其它相关文章!


搞代码网(gaodaima.com)提供的所有资源部分来自互联网,如果有侵犯您的版权或其他权益,请说明详细缘由并提供版权或权益证明然后发送到邮箱[email protected],我们会在看到邮件的第一时间内为您处理,或直接联系QQ:872152909。本网站采用BY-NC-SA协议进行授权
转载请注明原文链接:PyTorch梯度裁剪避免训练loss nan的操作

喜欢 (0)
[搞代码]
分享 (0)
发表我的评论
取消评论

表情 贴图 加粗 删除线 居中 斜体 签到

Hi,您需要填写昵称和邮箱!

  • 昵称 (必填)
  • 邮箱 (必填)
  • 网址