• 欢迎访问搞代码网站,推荐使用最新版火狐浏览器和Chrome浏览器访问本网站!
  • 如果您觉得本站非常有看点,那么赶紧使用Ctrl+D 收藏搞代码吧

Pandas 如何筛选包含特定字符的列

python 搞代码 4年前 (2022-01-07) 39次浏览 已收录 0个评论
文章目录[隐藏]

这篇文章主要介绍了Pandas 如何筛选包含特定字符的列,具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧

问题提出:

比如有一个三百多列的数据集,想要快速找到包含xxx的列,这里有三种方法

if判断+列表解析式

 [x for x in df.columns if 'xxx' in x]

str.contain()+列表解析式

 [x for x in df.columns[df.columns.str.contain('xxx')]]

filter函数

 df.filter(like='xxx').columns

关于filter,这里可以多说一句,除了like匹配之外,还支持正则表达式匹配,参数为regex。

官方api上给出了filter更详细的用法,除了过滤列名外,还可以在行、列上进行筛选,filter全部的参数如下:

item:接收list类型参数,保留参数内项目的标签,举例

 # 等同df[['a', 'b', 'c']] df.filter(item=['a', 'b', 'c'])

like like=’xxx’ 等同 ‘xxx’ in labels

regex 正则表达式,输入字符串pattern

axis 表示作用的轴

更多示例见官网:DataFrame filter函数

补充:python-pandas如何选取满足条件的特定的行和列

我就废话不多说了,大家还是直接看代码吧~

 import pandas as pd df1 = pd.read_csv("data/trans/bike_flow.csv") # ['t_idx' 'r_idx' 'c_idx' 'bike_out_cnt' <a style="color:transparent">来源gao($daima.com搞@代@#码网</a>'bike_in_cnt' 'flow_stay' 'flow_in' 'flow_out'] print(df1.columns.values) # (23016, 8) print(df1.shape) # ['t_idx', 'bike_in_cnt']是取特定的列 # df1['bike_in_cnt'] > 10是取特定的行 df2 = df1[['t_idx', 'bike_in_cnt']][df1['bike_in_cnt'] > 10] # (328, 2) print(df2.shape) 

以上为个人经验,希望能给大家一个参考,也希望大家多多支持gaodaima搞代码网。如有错误或未考虑完全的地方,望不吝赐教。

以上就是Pandas 如何筛选包含特定字符的列的详细内容,更多请关注gaodaima搞代码网其它相关文章!


搞代码网(gaodaima.com)提供的所有资源部分来自互联网,如果有侵犯您的版权或其他权益,请说明详细缘由并提供版权或权益证明然后发送到邮箱[email protected],我们会在看到邮件的第一时间内为您处理,或直接联系QQ:872152909。本网站采用BY-NC-SA协议进行授权
转载请注明原文链接:Pandas 如何筛选包含特定字符的列

喜欢 (0)
[搞代码]
分享 (0)
发表我的评论
取消评论

表情 贴图 加粗 删除线 居中 斜体 签到

Hi,您需要填写昵称和邮箱!

  • 昵称 (必填)
  • 邮箱 (必填)
  • 网址