• 欢迎访问搞代码网站,推荐使用最新版火狐浏览器和Chrome浏览器访问本网站!
  • 如果您觉得本站非常有看点,那么赶紧使用Ctrl+D 收藏搞代码吧

python买卖股票的最佳时机(基于贪心/蛮力算法)

python 搞代码 4年前 (2022-01-07) 37次浏览 已收录 0个评论

这篇文章主要介绍了python买卖股票的最佳时机(基于贪心/蛮力算法),文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友可以参考下

开始刷leetcode算法题 今天做的是“买卖股票的最佳时机”

题目要求

给定一个数组,它的第 i 个元素是一支给定股票第 i 天的价格。

设计一个算法来计算你所能获取的最大利润。你可以尽可能地完成更多的交易(多次买卖一支股票)。

注意:你不能同时参与多笔交易(你必须在再次购买前出售掉之前的股票)。

看到这个题目 最初的想法是蛮力法

通过两层循环 不断计算不同天之间的利润及利润和

下面上代码

 class Solution(object): def maxProfit(self, prices): """ :type prices: List[int] :rtype: int """ self.allbuy1 = []  #单次买卖的差值数组 (可能为负) self.allbuy2 = []  #所有可能买卖的利润数组 (可能为负) # allbuy1和allbuy2的区别为一个是单次买卖 一个是多次买卖和 self.curbuy(prices,0,0) #prices 为价格表 0:初始 0: #print(self.allbuy1) #print(self.allbuy2) return self.picBigest(self.allbuy2) def buyticket(self,prilist,a,b):    #list:放入的价格数组 a:上一次买入的价格 b:今天卖出的价格 return prilist[b] -prilist[a]  #返回 赚取得价格 def curbuy(self,plist,x,result): #plist:价格数组 x:当天的数组坐标 result: 利润 obj=result           #固定上一次的价格 保存为上一个递归 lens=len(plist)        #天数 for i in range(x,lens-1): for j in range(i+1,lens): temp=self.buyticket(plist,i, j) self.allbuy1.append(temp) self.allbuy2.append(temp)   #单次利润放入数组 result = obj + temp   #将之前的利润加上今天的利润 if(x>=2):       #如果买入是第2+1天以后 则可以加上之前的利润 self.allbuy2.append(result) #多次买卖利润放入数组 self.curbuy(plist,j+1,result)  #递归 j+1:卖出的后一天 result:利润 def picBigest(self,reslist): big=0 for i in reslist: if (i>big): big=i print(big) return big if __name__ == '__main__': test=Solution() prices = [5,7,3,8] # 输入的每日股票数组 test.maxProfit(prices)

分析:

这个代码理解起来简单 就是将所有可能都放入数组中 找出最大一个可能

将这个代码提交时 显示 超出时间限制 确实 如果输入的数组长度非常大时 计算量巨大 出现错误

―――――――――――――――――――――――――――――――――来源gaodai#ma#com搞*!代#%^码$网―――――――――――――――――――――――――――――――――――――――――――――

更换思路:利用贪心算法解决此事

首先介绍 一下贪心算法: 对问题只对当前情况进行最优解处理,之后发生什么对之前的决定都不改变。简单的说就是一个局部最优解的过程

介绍个例子就明白了: 找零钱问题

假设有面值为5元、2元、1元、5角、2角、1角的货币,需要找给顾客4元6角现金,为使付出的货币的数量最少

  •   首先找出小于4元6角的最大面值(2元)
  •   其次找出小于2元6角的最大面值(2元)
  •   接着找出小于6角的最大面值(5角)
  •   最后找出小于1角的最大面值(1角) —付出4张纸币

介绍完了贪心算法简单思想 就利用该方法解决对应问题

在已知股票价格走势情况下 只需要对下一天进行判断 如果涨了 则买 如果跌了则卖 这样收益会保持固定增长

当然了 有人会提出 我可以选择不卖等几天再卖 或不买等几天再买 的方式 一样可以保持增长 但是如图

如果在第2天买入 3天卖出 4天买入 5天卖出 收益为A+B

如果在第2天买入 5天卖出 收益为 C

明显得出A+B大于C 所以贪心法在这种情况非常适用并且肯定得到最优解

直接上代码

 class Solution(object): def maxProfit(self, prices): profit = 0 for day in range(len(prices)-1): differ = prices[day+1] - prices[day] if differ > 0: profit += differ return profit if __name__ == '__main__': test=Solution() prices = [5,7,3,9] # 输入的每日股票数组 print(test.maxProfit(prices))

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持gaodaima搞代码网

以上就是python买卖股票的最佳时机(基于贪心/蛮力算法)的详细内容,更多请关注gaodaima搞代码网其它相关文章!


搞代码网(gaodaima.com)提供的所有资源部分来自互联网,如果有侵犯您的版权或其他权益,请说明详细缘由并提供版权或权益证明然后发送到邮箱[email protected],我们会在看到邮件的第一时间内为您处理,或直接联系QQ:872152909。本网站采用BY-NC-SA协议进行授权
转载请注明原文链接:python买卖股票的最佳时机(基于贪心/蛮力算法)

喜欢 (0)
[搞代码]
分享 (0)
发表我的评论
取消评论

表情 贴图 加粗 删除线 居中 斜体 签到

Hi,您需要填写昵称和邮箱!

  • 昵称 (必填)
  • 邮箱 (必填)
  • 网址