• 欢迎访问搞代码网站,推荐使用最新版火狐浏览器和Chrome浏览器访问本网站!
  • 如果您觉得本站非常有看点,那么赶紧使用Ctrl+D 收藏搞代码吧

python实现基于SVM手写数字识别功能

python 搞代码 4年前 (2022-01-07) 26次浏览 已收录 0个评论

这篇文章主要为大家详细介绍了python实现基于SVM手写数字识别功能,文中示例代码介绍的非常详细,具有一定的参考价值,感兴趣的小伙伴们可以参考一下

本文实例为大家分享了SVM手写数字识别功能的具体代码,供大家参考,具体内容如下

1、SVM手写数字识别

识别步骤:

(1)样本图像的准备。
(2)图像尺寸标准化:将图像大小都标准化为8*8大小。
(3)读取未知样本图像,提取图像特征,生成图像特征组。
(4)将未知测试样本图像特征组送入SVM进行测试,将测试的结果输出。

识别代码:

 #!/usr/bin/env python import numpy as np import mlpy import cv2 print 'loading ...' def getnumc(fn)<b style="color:transparent">来源gao@dai!ma.com搞$代^码网</b>: '''返回数字特征''' fnimg = cv2.imread(fn) #读取图像 img=cv2.resize(fnimg,(8,8)) #将图像大小调整为8*8 alltz=[] for now_h in xrange(0,8): xtz=[] for now_w in xrange(0,8): b = img[now_h,now_w,0] g = img[now_h,now_w,1] r = img[now_h,now_w,2] btz=255-b gtz=255-g rtz=255-r if btz>0 or gtz>0 or rtz>0: nowtz=1 else: nowtz=0 xtz.append(nowtz) alltz+=xtz return alltz #读取样本数字 x=[] y=[] for numi in xrange(1,10): for numij in xrange(1,5): fn='nums/'+str(numi)+'-'+str(numij)+'.png-600' x.append(getnumc(fn)) y.append(numi) x=np.array(x) y=np.array(y) svm = mlpy.LibSvm(svm_type='c_svc', kernel_type='poly',gamma=10) svm.learn(x, y) print u"训练样本测试:" print svm.pred(x) print u"未知图像测试:" for iii in xrange (1,10): testfn= 'nums/test/'+str(iii)+'-test.png-600' testx=[] testx.append(getnumc(testfn)) print print testfn+":", print svm.pred(testx) 

样本:

结果:

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持gaodaima搞代码网

以上就是python实现基于SVM手写数字识别功能的详细内容,更多请关注gaodaima搞代码网其它相关文章!


搞代码网(gaodaima.com)提供的所有资源部分来自互联网,如果有侵犯您的版权或其他权益,请说明详细缘由并提供版权或权益证明然后发送到邮箱[email protected],我们会在看到邮件的第一时间内为您处理,或直接联系QQ:872152909。本网站采用BY-NC-SA协议进行授权
转载请注明原文链接:python实现基于SVM手写数字识别功能

喜欢 (0)
[搞代码]
分享 (0)
发表我的评论
取消评论

表情 贴图 加粗 删除线 居中 斜体 签到

Hi,您需要填写昵称和邮箱!

  • 昵称 (必填)
  • 邮箱 (必填)
  • 网址