• 欢迎访问搞代码网站,推荐使用最新版火狐浏览器和Chrome浏览器访问本网站!
  • 如果您觉得本站非常有看点,那么赶紧使用Ctrl+D 收藏搞代码吧

在Python3 numpy中mean和average的区别详解

python 搞代码 4年前 (2022-01-07) 24次浏览 已收录 0个评论

今天小编就为大家分享一篇在Python3 numpy中mean和average的区别详解,具有很好的参考价值,希望对大家有所帮助。一起来源[email protected]搞@^&代*@码网跟随小编过来看看吧

mean和average都是计算均值的函数,在不指定权重的时候average和mean是一样的。指定权重后,average可以计算一维的加权平均值。

具体如下:

 import numpy as np a = np.array([np.random.randint(0, 20, 5), np.random.randint(0, 20, 5)]) print('原始数据\n', a) print('mean函数'.center(20, '*')) print('对所有数据计算\n', a.mean()) print('axis=0,按行方向计算,即每列\n', a.mean(axis=0)) # 按行方向计算,即每列 print('axis=1,按列方向计算,即每行\n', a.mean(axis=1)) # 按列方向计算,即每行 print('average函数'.center(20, '*')) print('对所有数据计算\n', np.average(a)) print('axis=0,按行方向计算,即每列\n', np.average(a, axis=0)) # 按行方向计算,即每列 print('axis=1,按列方向计算,即每行\n', np.average(a, axis=1)) # 按列方向计算,即每行 b = np.array([1, 2, 3, 4]) wts = np.array([4, 3, 2, 1]) print('不指定权重\n', np.average(b)) print('指定权重\n', np.average(b, weights=wts))

运行结果:

 原始数据 [[10 12 7 14 5] [12 10 2 16 7]] *******mean函数******* 对所有数据计算 9.5 axis=0,按行方向计算,即每列 [ 11. 11. 4.5 15. 6. ] axis=1,按列方向计算,即每行 [ 9.6 9.4] *****average函数****** 对所有数据计算 9.5 axis=0,按行方向计算,即每列 [ 11. 11. 4.5 15. 6. ] axis=1,按列方向计算,即每行 [ 9.6 9.4] 不指定权重 2.5 指定权重 2.0 

以上这篇在Python3 numpy中mean和average的区别详解就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持gaodaima搞代码网

以上就是在Python3 numpy中mean和average的区别详解的详细内容,更多请关注gaodaima搞代码网其它相关文章!


搞代码网(gaodaima.com)提供的所有资源部分来自互联网,如果有侵犯您的版权或其他权益,请说明详细缘由并提供版权或权益证明然后发送到邮箱[email protected],我们会在看到邮件的第一时间内为您处理,或直接联系QQ:872152909。本网站采用BY-NC-SA协议进行授权
转载请注明原文链接:在Python3 numpy中mean和average的区别详解
喜欢 (0)
[搞代码]
分享 (0)
发表我的评论
取消评论

表情 贴图 加粗 删除线 居中 斜体 签到

Hi,您需要填写昵称和邮箱!

  • 昵称 (必填)
  • 邮箱 (必填)
  • 网址