• 欢迎访问搞代码网站,推荐使用最新版火狐浏览器和Chrome浏览器访问本网站!
  • 如果您觉得本站非常有看点,那么赶紧使用Ctrl+D 收藏搞代码吧

在keras中获取某一层上的feature map实例

python 搞代码 4年前 (2022-01-07) 13次浏览 已收录 0个评论

今天小编就为大家分享一篇在keras中获取某一层上的feature map实例,具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧

在深度学习中,如果我们想获得某一个层上的feature map,就像下面的图这样,怎么做呢?

我们的代码是使用keras写的VGG16网络,网络结构如图:

那么我们随便抽取一层的数据吧,就拿第四层的pooling以后的结果作为输出吧,参考上面的网络结构,得到的结果维度应该是[1,56,56,128]的尺度。

怎么做呢?

首先通过keras构建模型:

 model = VGG16(include_top=True, weights='imagenet')

然后设置输入和输出为:原始的输入和该层对应的输出,然后使用predict函数得到对应的结果

 dense_result = Model(inputs=model.input,outputs=model.get_layer("block2_pool").output) dense_res = dense_result.predict(x)#使用predict得到该层结果

设置随机数(或者固定的数字)来获取某一层的结果

 rand_layer = random.randint(10,128) x_output = dense_res[0,:,:,rand_layer] #获取某一层的数据:因为原始数据维度是[1,x,x,depths]的,我们仅仅提取某一个depth对应的[x,x]维度的信息 # 获取最大值,然后对该层数据进行归一化之后投影到0-255之间 max = np.max(x_<em style="color:transparent">来源gao.dai.ma.com搞@代*码网</em>output) print(max,"max value is :") # 然后进行归一化操作 x_output =x_output.astype("float32") / max * 255 print(x_output.shape)

最后对该层的feature进行显示,我们使用Pillow库

 # 把图像转换成image可以表示的方式进行显示 from PIL import Image as PILImage x_output =PILImage.fromarray(np.asarray(x_output)) x_output1 = x_output.resize((400,400)) x_output1.show() print(np.asarray(x_output1))

结果如上图所示啦~

以上这篇在keras中获取某一层上的feature map实例就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持gaodaima搞代码网

以上就是在keras中获取某一层上的feature map实例的详细内容,更多请关注gaodaima搞代码网其它相关文章!


搞代码网(gaodaima.com)提供的所有资源部分来自互联网,如果有侵犯您的版权或其他权益,请说明详细缘由并提供版权或权益证明然后发送到邮箱[email protected],我们会在看到邮件的第一时间内为您处理,或直接联系QQ:872152909。本网站采用BY-NC-SA协议进行授权
转载请注明原文链接:在keras中获取某一层上的feature map实例

喜欢 (0)
[搞代码]
分享 (0)
发表我的评论
取消评论

表情 贴图 加粗 删除线 居中 斜体 签到

Hi,您需要填写昵称和邮箱!

  • 昵称 (必填)
  • 邮箱 (必填)
  • 网址