• 欢迎访问搞代码网站,推荐使用最新版火狐浏览器和Chrome浏览器访问本网站!
  • 如果您觉得本站非常有看点,那么赶紧使用Ctrl+D 收藏搞代码吧

python 实现非极大值抑制算法(Non-maximum suppression, NMS)

python 搞代码 4年前 (2022-01-07) 29次浏览 已收录 0个评论

这篇文章主要介绍了python 如何实现非极大值抑制算法(Non-maximum suppression, NMS),帮助大家更好的进行机器学习,感兴趣的朋友可以了解下

NMS 算法在目标检测,目标定位领域有较广泛的应用。

算法原理

非极大值抑制算法(Non-maximum suppression, NMS)的本质是搜索局部极大值,抑制非极大值元素。

算法的作用

当算法对一个目标产生了多个候选框的时候,选择 score 最高的框,并抑制其他对于改目标的候选框

适用场景

一幅图中有多个目标(如果只有一个目标,那么直接取 score 最高的候选框即可)。

算法的输入

算法对一幅图产生的所有的候选框,以及每个框对应的 score (可以用一个 5 维数组 dets 表示,前 4 维表示四个角的坐标,第 5 维表示分数),阈值 thresh

算法的输出

正确的候选框组(dets 的一个子集)。

来源gaodai.ma#com搞##代!^码@网

细节

  • 起始,设所有的框都没有被抑制,所有框按照 score 从大到小排序。
  • 从第 0 个框(分数最高)开始遍历:对于每一个框,如果该框没有被抑制,就将所有与它 IoU 大于 thresh 的框设为抑制。
  • 返回没被抑制的框。

参考代码

 # -------------------------------------------------------- # Fast R-CNN # Copyright (c) 2015 Microsoft # Licensed under The MIT License [see LICENSE for details] # Written by Ross Girshick # -------------------------------------------------------- import numpy as np cimport numpy as np cdef inline np.float32_t max(np.float32_t a, np.float32_t b): return a if a >= b else b cdef inline np.float32_t min(np.float32_t a, np.float32_t b): return a if a = thresh: suppressed[j] = 1 return keep 

以上就是python 实现非极大值抑制算法(Non-maximum suppression, NMS)的详细内容,更多关于python 非极大值抑制算法的资料请关注gaodaima搞代码网其它相关文章!

以上就是python 实现非极大值抑制算法(Non-maximum suppression, NMS)的详细内容,更多请关注gaodaima搞代码网其它相关文章!


搞代码网(gaodaima.com)提供的所有资源部分来自互联网,如果有侵犯您的版权或其他权益,请说明详细缘由并提供版权或权益证明然后发送到邮箱[email protected],我们会在看到邮件的第一时间内为您处理,或直接联系QQ:872152909。本网站采用BY-NC-SA协议进行授权
转载请注明原文链接:python 实现非极大值抑制算法(Non-maximum suppression, NMS)

喜欢 (0)
[搞代码]
分享 (0)
发表我的评论
取消评论

表情 贴图 加粗 删除线 居中 斜体 签到

Hi,您需要填写昵称和邮箱!

  • 昵称 (必填)
  • 邮箱 (必填)
  • 网址