• 欢迎访问搞代码网站,推荐使用最新版火狐浏览器和Chrome浏览器访问本网站!
  • 如果您觉得本站非常有看点,那么赶紧使用Ctrl+D 收藏搞代码吧

使用Python实现正态分布、正态分布采样

python 搞代码 4年前 (2022-01-07) 74次浏览 已收录 0个评论

今天小编就为大家分享一篇使用Python实现正态分布、正态分布采样,具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧

多元正态分布(多元高斯分布)

直接从多元正态分布讲起。多元正态分布公式如下:

这就是多元正态分布的定义,均值好理解,就是高斯分布的概率分布值最大的位置,进行采样时也就是采样的中心点。而协方差矩阵在多维上形式较多。

协方差矩阵

一般来说,协方差矩阵有三种形式,分别称为球形、对角和全协方差。以二元为例:

为了方便展示不同协方差矩阵的效果,我们以二维为例。(书上截的图,凑活着看吧,是在不想画图了)

其实从这个图上可以很好的看出,协方差矩阵对正态分布的影响,也就很好明白了这三个协方差矩阵是哪里来的名字了。可以看出,球形协方差矩阵,会产生圆形(二维)或者球形(三维)的等高线,对角协方差矩阵和全协方差矩阵,会产生椭圆形的等高线。更一般地,在一个D维空间中,球形协方差矩阵,会产生一个D维球面等高线;对角协方差矩阵,会产生一个坐标轴对其的椭球型等高线;全协方差矩阵,会在任意位置产生一个坐标轴对其的椭球型等高线。

当协方差矩阵是球形的或者是对角的,单独的变量之间是独立的

协方差分解

时间不足来源gaodai#ma#com搞*!代#%^码网,具体解释以后再补

下面是协方差分解的原理图

变量的线性变换(正态分布采样原理)

python实现

多元正态分布在python的numpy库中有很方便一个函数:

 np.random.multivariate_normal(mean=mean, cov=conv, size=N)

这个函数中,mean代表均值,是在每个维度中的均值。cov代表协方差矩阵,就像上面讲的那种形式,协方差矩阵值的大小将决定采样范围的大小。size代表需要采样生成的点数,此时输出大小为(N*D)的坐标矩阵。

另外,其他参数包括:check_valid,这个参数用于决定当cov即协方差矩阵不是半正定矩阵时程序的处理方式,它一共有三个值:warn,raise以及ignore。当使用warn作为传入的参数时,如果cov不是半正定的程序会输出警告但仍旧会得到结果;当使用raise作为传入的参数时,如果cov不是半正定的程序会报错且不会计算出结果;当使用ignore时忽略这个问题即无论cov是否为半正定的都会计算出结果

tol:检查协方差矩阵奇异值时的公差,float类型。

下面是一个小demo

 import numpy as np import matplotlib.pyplot as plt mean = np.array([2,1])    # 均值 conv = np.array([[0.5, 0.0],  # 协方差矩阵 [0.0, 0.5]]) axis = np.random.multivariate_normal(mean=mean, cov=conv, size=200) x, y = np.random.multivariate_normal(mean=mean, cov=conv, size=1000).T # print(axis[:]) plt.plot(axis[:, 0], axis[:, 1], 'ro') plt.show() plt.plot(x, y, 'ro') plt.show() 

注意,单独取出每个坐标轴的坐标数组时,需要在最后加上.T,否则会报错 效果展示:

协方差值的大小对采样的影响:

 mean = np.array([2,1])    # 均值 conv = np.array([[0.5, 0.0],  # 协方差矩阵 [0.0, 0.5]]) conv2 = np.array([[10, 0.0],  # 协方差矩阵 [0.0, 10]]) axis = np.random.multivariate_normal(mean=mean, cov=conv, size=200) x, y = np.random.multivariate_normal(mean=mean, cov=conv2, size=200).T # print(axis[:]) plt.plot(axis[:, 0], axis[:, 1], 'ro') plt.show() plt.plot(x, y, 'ro') plt.show() 

效果如下:

这里没有设定随机种子店,每次随机数会有所不同。

以上这篇使用Python实现正态分布、正态分布采样就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持gaodaima搞代码网

以上就是使用Python实现正态分布、正态分布采样的详细内容,更多请关注gaodaima搞代码网其它相关文章!


搞代码网(gaodaima.com)提供的所有资源部分来自互联网,如果有侵犯您的版权或其他权益,请说明详细缘由并提供版权或权益证明然后发送到邮箱[email protected],我们会在看到邮件的第一时间内为您处理,或直接联系QQ:872152909。本网站采用BY-NC-SA协议进行授权
转载请注明原文链接:使用Python实现正态分布、正态分布采样

喜欢 (0)
[搞代码]
分享 (0)
发表我的评论
取消评论

表情 贴图 加粗 删除线 居中 斜体 签到

Hi,您需要填写昵称和邮箱!

  • 昵称 (必填)
  • 邮箱 (必填)
  • 网址