今天小编就为大家分享一篇tensorflow指定GPU与动态分配GPU memory设置,具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧
在tensorflow中,默认指定占用所有的GPU,如需指定占用的GPU,可以在命令行中:
export CUDA_VISIBLE_DEVICES=1
这样便是只占用1号GPU,通过命令
nvidia-smi
可以查看各个GPU的使用情况。
另外,也可以在python程序中指定GPU,并且动态分配memory,代码如下
import os import sys os.environ['CUDA_VISIBLE_DEVICES'] = sys.argv[1] import tensorflow as tf from keras.backend.tensorflow_backend import set_session config = tf.ConfigProto() config.gpu_options.allow_growth = True set_session(tf.S<a style="color:transparent">来源gao($daima.com搞@代@#码网</a>ession(config=config))
这样,占用的GPU就是sys.argv[1]了,并且会按需分配memory。
以上这篇tensorflow指定GPU与动态分配GPU memory设置就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持gaodaima搞代码网。
以上就是tensorflow指定GPU与动态分配GPU memory设置的详细内容,更多请关注gaodaima搞代码网其它相关文章!