• 欢迎访问搞代码网站,推荐使用最新版火狐浏览器和Chrome浏览器访问本网站!
  • 如果您觉得本站非常有看点,那么赶紧使用Ctrl+D 收藏搞代码吧

在Tensorflow中实现梯度下降法更新参数值

python 搞代码 4年前 (2022-01-07) 18次浏览 已收录 0个评论

今天小编就为大家分享一篇在Tensorflow中实现梯度下降法更新参数值,具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧

我就废话不多说了,直接上代码吧!

 tf.train.GradientDescentOptimizer(0.01).minimize(cross_entropy)

TensorFlow经过使用梯度下降法对损失函数中的变量进行修改值,默认修改tf.Variable(tf.zeros([784,10]))

为Variable的参数。

 train_step = tf.train.GradientDescentOptimizer(0.01).minimize(cross_entropy,var_list=[w,b])

也可以使用var_list参数来定义更新那些参数的值

 #导入Minst数据集 import input_data mnist = input_data.read_data_sets("data",one_hot=True) #导入tensorflow库 import tensorflow as tf #输入变量,把28*28的图片变成一维数组(丢失结构信息) x = tf.placeholder("float",[None,784]) #权重矩阵,把28*28=784的一维输入,变成0-9这10个数字的输出 w = tf.Variable(tf.zeros([784,10])) #偏置 b = tf.Variable(tf.zeros([10])) #核心运算,其实就是softmax(x*w+b) y = tf.nn.softmax(tf.matmul(x,w) + b) #这个是训练集的正确结果 y_ = tf.placeholder("float",[None,10]) #交叉熵,作为损失函数 cross_entropy = -tf.reduce_sum(y_ * tf.log(y)) #梯度下降算法,最小化交叉熵 train_step = tf.train.GradientDescentOptimizer(0.01).minimize(cross_entropy) #初始化,在run之前必须进行的 init = tf.initialize_all_variables() #创建session以便运算 sess = tf.Session() sess.run(init) #迭代1000次 for i in range(1000): #获取训练数据集的图片输入和正确表示数字 batch_xs, batch_ys = mnist.train.next_batch(100) #运行刚才建立的梯度下降算法,x赋值为图片输入,y_赋值为正确的表示数字 sess.run(train_step,feed_dict = {x:batch_xs, y_: batch_ys}) #tf.argmax获取最大值的索引。比较运算后的结果和本身结果是否相同。 #这步的结果应该是[1,1,1,1,1,1,1,1,0,1...........1,1,0,1]这种形式。 #1代表正确,0代表错误 correct_prediction = tf.equal(tf.argmax(y,1), tf.argmax(y_,1)) #tf.cast先将数据转换成float,防止求平均不准确。 #tf.reduce_mean由于只有一个参数,就是上面那个数组的平均值。 accuracy = tf.reduce_mean(tf.cast(correct_prediction,"float")) #输出 print(sess.run(accuracy,feed_dict={x:mnist.test.images,y_: mnist.test.labels}))

计算结果如下

 "C:\Program Files\Anaconda3\python.exe" D:/pycharmprogram/tensorflow_learn/softmax_learn/softmax_learn.py Extracting data\train-images-idx3-ubyte.gz Extracting data\train-labels-idx1-ubyte.gz Extracting data\t10k-images-idx3-ubyte.gz Extracting data\t10k-labels-idx1-ubyte.gz WARNING:tensorflow:From C:\Program Files\Anaconda3\lib\site-packages\tensorflow\python\util\tf_should_use.py:175: initialize_all_variables (from tensorflow.python.ops.variables) is deprecated and will be removed after 2017-03-02. Instructions for updating: Use `tf.global_variables_initializer` instead. 2018-05-14 15:49:45.866600: W C:\tf_jenkins\home\workspace\rel-win\M\windows\PY\35\tensorflow\core\platform\cpu_feature_guard.cc:45] The TensorFlow library wasn't compiled to use AVX instructions, but these are available on your machine and could speed up CPU computations. 2018-05-14 15:49:45.866600: W C:\tf_jenkins\home\workspace\rel-win\M\windows\PY\35\tensorflow\core\platform\cpu_feature_guard.cc:45] The TensorFlow library wasn't compiled to use AVX2 instructions, but these are available on your machine and could speed up CPU computations. 0.9163 Process finished with exit code 0

如果限制,只更新参数W查看效果

 "C:\Program Files\Anaconda3\python.exe" D:/pycharmprogram/tensorflow_learn/softmax_learn/softmax_learn.py Extracting data\train-images-idx3-ubyte.gz Extracting data\train-labels-idx1-ubyte.gz Extracting data\t10k-images-idx3-ubyte.gz Extracting data\t10k-labels-idx1-ubyte.gz WARNING:tensorflow:From C:\Program Files\Anaconda3\lib\site-packages\tensorflow\python\util\tf_should_use.py:175: initialize_all_variables (from tensorflow.python.ops.variables) is deprecated and will be removed after 2017-03-02. Instructions for updating: Use `tf.global_variables_initializer` instead. 2018-05-14 15:51:08.543600: W C:\tf_jenkins\home\workspace\rel-win\M\windows\PY\35\tensorflow\core\platform\cpu_feature_guard.cc:45] The TensorFlow library wasn't compiled to use AVX instructions, but these are available on your machine and could speed up CPU computations. 2018-05-14 15:51:08.544600: W C:\tf_jenkins\home\workspace\rel-win\M\windows\PY\35\tensorflow\core\platform\cpu_feature_guard.cc:45] The TensorFlow library wasn't compiled to use AVX2 instructions, but these are available on your machine and could speed up CPU computations. 0.9<i style="color:transparent">来源gaodai$ma#com搞$$代**码)网</i>187 Process finished with exit code 0

可以看出只修改W对结果影响不大,如果设置只修改b

 #导入Minst数据集 import input_data mnist = input_data.read_data_sets("data",one_hot=True) #导入tensorflow库 import tensorflow as tf #输入变量,把28*28的图片变成一维数组(丢失结构信息) x = tf.placeholder("float",[None,784]) #权重矩阵,把28*28=784的一维输入,变成0-9这10个数字的输出 w = tf.Variable(tf.zeros([784,10])) #偏置 b = tf.Variable(tf.zeros([10])) #核心运算,其实就是softmax(x*w+b) y = tf.nn.softmax(tf.matmul(x,w) + b) #这个是训练集的正确结果 y_ = tf.placeholder("float",[None,10]) #交叉熵,作为损失函数 cross_entropy = -tf.reduce_sum(y_ * tf.log(y)) #梯度下降算法,最小化交叉熵 train_step = tf.train.GradientDescentOptimizer(0.01).minimize(cross_entropy,var_list=[b]) #初始化,在run之前必须进行的 init = tf.initialize_all_variables() #创建session以便运算 sess = tf.Session() sess.run(init) #迭代1000次 for i in range(1000): #获取训练数据集的图片输入和正确表示数字 batch_xs, batch_ys = mnist.train.next_batch(100) #运行刚才建立的梯度下降算法,x赋值为图片输入,y_赋值为正确的表示数字 sess.run(train_step,feed_dict = {x:batch_xs, y_: batch_ys}) #tf.argmax获取最大值的索引。比较运算后的结果和本身结果是否相同。 #这步的结果应该是[1,1,1,1,1,1,1,1,0,1...........1,1,0,1]这种形式。 #1代表正确,0代表错误 correct_prediction = tf.equal(tf.argmax(y,1), tf.argmax(y_,1)) #tf.cast先将数据转换成float,防止求平均不准确。 #tf.reduce_mean由于只有一个参数,就是上面那个数组的平均值。 accuracy = tf.reduce_mean(tf.cast(correct_prediction,"float")) #输出 print(sess.run(accuracy,feed_dict={x:mnist.test.images,y_: mnist.test.labels})) 

计算结果:

 "C:\Program Files\Anaconda3\python.exe" D:/pycharmprogram/tensorflow_learn/softmax_learn/softmax_learn.py Extracting data\train-images-idx3-ubyte.gz Extracting data\train-labels-idx1-ubyte.gz Extracting data\t10k-images-idx3-ubyte.gz Extracting data\t10k-labels-idx1-ubyte.gz WARNING:tensorflow:From C:\Program Files\Anaconda3\lib\site-packages\tensorflow\python\util\tf_should_use.py:175: initialize_all_variables (from tensorflow.python.ops.variables) is deprecated and will be removed after 2017-03-02. Instructions for updating: Use `tf.global_variables_initializer` instead. 2018-05-14 15:52:04.483600: W C:\tf_jenkins\home\workspace\rel-win\M\windows\PY\35\tensorflow\core\platform\cpu_feature_guard.cc:45] The TensorFlow library wasn't compiled to use AVX instructions, but these are available on your machine and could speed up CPU computations. 2018-05-14 15:52:04.483600: W C:\tf_jenkins\home\workspace\rel-win\M\windows\PY\35\tensorflow\core\platform\cpu_feature_guard.cc:45] The TensorFlow library wasn't compiled to use AVX2 instructions, but these are available on your machine and could speed up CPU computations. 0.1135 Process finished with exit code 0

如果只更新b那么对效果影响很大。

以上这篇在Tensorflow中实现梯度下降法更新参数值就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持gaodaima搞代码网

以上就是在Tensorflow中实现梯度下降法更新参数值的详细内容,更多请关注gaodaima搞代码网其它相关文章!


搞代码网(gaodaima.com)提供的所有资源部分来自互联网,如果有侵犯您的版权或其他权益,请说明详细缘由并提供版权或权益证明然后发送到邮箱[email protected],我们会在看到邮件的第一时间内为您处理,或直接联系QQ:872152909。本网站采用BY-NC-SA协议进行授权
转载请注明原文链接:在Tensorflow中实现梯度下降法更新参数值

喜欢 (0)
[搞代码]
分享 (0)
发表我的评论
取消评论

表情 贴图 加粗 删除线 居中 斜体 签到

Hi,您需要填写昵称和邮箱!

  • 昵称 (必填)
  • 邮箱 (必填)
  • 网址