• 欢迎访问搞代码网站,推荐使用最新版火狐浏览器和Chrome浏览器访问本网站!
  • 如果您觉得本站非常有看点,那么赶紧使用Ctrl+D 收藏搞代码吧

【python】matplotlib动态显示详解

python 搞代码 4年前 (2022-01-07) 19次浏览 已收录 0个评论

这篇文章主要介绍了matplotlib动态显示,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧

1.matplotlib动态绘图

python在绘图的时候,需要开启 interactive mode。核心代码如下:

 plt.ion(); #开启interactive mode 成功的关键函数 fig = plt.figure(1); for i in range(100): filepath="E:/Model/weights-improvement-" + str(i + 1) + ".hdf5"; model.load_weights(filepath); #测试数据 x_new = np.linspace(low, up, 1000); y_new = getfit(model,x_new); # 显示数据 plt.clf(); plt.plot(x,y); plt.scatter(x_sample, y_sample); plt.plot(x_new,y_new); ffpath = "E:/imgs/" + str(i) + ".jpg-600"; plt.savefig(ffpath); plt.pause(0.01)       # 暂停0.01秒 ani = animation.FuncAnimation(plt.figure(2), update,range(100),init_func=init, interval=500); ani.save("E:/test.gif",writer='pillow'); plt.ioff()         # 关闭交互模式 

2.实例

已知下面采样自Sin函数的数据:

  x y
1 0.093 -0.81
2 0.58 -0.45
3 1.04 -0.007
4 1.55 0.48
5 2.15 0.89
6 2.62 0.997
7 2.71 0.995
8 2.73 0.993
9 3.03 0.916
10 3.14 0.86
11 3.58 0.57
12 3.66 0.504
13 3.81 0.369
14 3.83 0.35
15 4.39 -0.199
16 4.44 -0.248
17 4.6 -0.399
18 5.39 -0.932
19 5.54 来源gaodai$ma#com搞$代*码网-0.975
20 5.76 -0.999

 通过一个简单的三层神经网络训练一个Sin函数的拟合器,并可视化模型训练过程的拟合曲线。

2.1 网络训练实现

主要做的事情是定义一个三层的神经网络,输入层节点数为1,隐藏层节点数为10,输出层节点数为1。

 import math; import random; from matplotlib import pyplot as plt from keras.models import Sequential from keras.layers.core import Dense from keras.optimizers import Adam import numpy as np from keras.callbacks import ModelCheckpoint import os #采样函数 def sample(low, up, num): data = []; for i in range(num): #采样 tmp = random.uniform(low, up); data.append(tmp); data.sort(); return data; #sin函数 def func(x): y = []; for i in range(len(x)): tmp = math.sin(x[i] - math.pi/3); y.append(tmp); return y; #获取模型拟合结果 def getfit(model,x): y = []; for i in range(len(x)): tmp = model.predict([x[i]], 10); y.append(tmp[0][0]); return y; #删除同一目录下的所有文件 def del_file(path): ls = os.listdir(path) for i in ls: c_path = os.path.join(path, i) if os.path.isdir(c_path): del_file(c_path) else: os.remove(c_path) if __name__ == '__main__': path = "E:/Model/"; del_file(path); low = 0; up = 2 * math.pi; x = np.linspace(low, up, 1000); y = func(x); # 数据采样 #   x_sample = sample(low,up,20); x_sample = [0.09326442022999694, 0.5812590520508311, 1.040490143783586, 1.5504427746047338, 2.1589557183817036, 2.6235357787018407, 2.712578091093361, 2.7379109336528167, 3.0339662651841186, 3.147676812083248, 3.58596337171837, 3.6621496731124314, 3.81130899864203, 3.833092859928872, 4.396611340802901, 4.4481080339256875, 4.609657879057151, 5.399731063412583, 5.54299720786794, 5.764084730699906]; y_sample = func(x_sample); # callback filepath="E:/Model/weights-improvement-{epoch:00d}.hdf5"; checkpoint= ModelCheckpoint(filepath, verbose=1, save_best_only=False, mode='max'); callbacks_list= [checkpoint]; # 建立顺序神经网络层次模型 model = Sequential(); model.add(Dense(10, input_dim=1, init='uniform', activation='relu')); model.add(Dense(1, init='uniform', activation='tanh')); adam = Adam(lr = 0.05); model.compile(loss='mean_squared_error', optimizer=adam, metrics=['accuracy']); model.fit(x_sample, y_sample, nb_epoch=1000, batch_size=20,callbacks=callbacks_list); #测试数据 x_new = np.linspace(low, up, 1000); y_new = getfit(model,x_new); # 数据可视化 plt.plot(x,y); plt.scatter(x_sample, y_sample); plt.plot(x_new,y_new); plt.show(); 

2.2 模型保存

 在神经网络训练的过程中,有一个非常重要的操作,就是将训练过程中模型的参数保存到本地,这是后面拟合过程可视化的基础。训练过程中保存的模型文件,如下图所示。

模型保存的关键在于fit函数中callback函数的设置,注意到,下面的代码,每次迭代,算法都会执行callbacks函数指定的函数列表中的方法。这里,我们的回调函数设置为ModelCheckpoint,其参数如下表所示:

参数 含义
filename 字符串,保存模型的路径
verbose

信息展示模式,0或1

(Epoch 00001: saving model to …)

mode ‘auto’,‘min’,‘max’
monitor 需要监视的值
save_best_only 当设置为True时,监测值有改进时才会保存当前的模型。在save_best_only=True时决定性能最佳模型的评判准则,例如,当监测值为val_acc时,模式应为max,当监测值为val_loss时,模式应为min。在auto模式下,评价准则由被监测值的名字自动推断
save_weights_only 若设置为True,则只保存模型权重,否则将保存整个模型(包括模型结构,配置信息等)
period CheckPoint之间的间隔的epoch数
 # callback filepath="E:/Model/weights-improvement-{epoch:00d}.hdf5"; checkpoint= ModelCheckpoint(filepath, verbose=1, save_best_only=False, mode='max'); callbacks_list= [checkpoint]; # 建立顺序神经网络层次模型 model = Sequential(); model.add(Dense(10, input_dim=1, init='uniform', activation='relu')); model.add(Dense(1, init='uniform', activation='tanh')); adam = Adam(lr = 0.05); model.compile(loss='mean_squared_error', optimizer=adam, metrics=['accuracy']); model.fit(x_sample, y_sample, nb_epoch=1000, batch_size=20,callbacks=callbacks_list); 

2.3 拟合过程可视化实现

利用上述保存的模型,我们就可以通过matplotlib实时地显示拟合过程。

 import math; import random; from matplotlib import pyplot as plt from keras.models import Sequential from keras.layers.core import Dense import numpy as np import matplotlib.animation as animation from PIL import Image #定义kdd99数据预处理函数 def sample(low, up, num): data = []; for i in range(num): #采样 tmp = random.uniform(low, up); data.append(tmp); data.sort(); return data; def func(x): y = []; for i in range(len(x)): tmp = math.sin(x[i] - math.pi/3); y.append(tmp); return y; def getfit(model,x): y = []; for i in range(len(x)): tmp = model.predict([x[i]], 10); y.append(tmp[0][0]); return y; def init(): fpath = "E:/imgs/0.jpg-600"; img = Image.open(fpath); plt.axis('off') # 关掉坐标轴为 off return plt.imshow(img); def update(i): fpath = "E:/imgs/" + str(i) + ".jpg-600"; img = Image.open(fpath); plt.axis('off') # 关掉坐标轴为 off return plt.imshow(img); if __name__ == '__main__': low = 0; up = 2 * math.pi; x = np.linspace(low, up, 1000); y = func(x); # 数据采样 #   x_sample = sample(low,up,20); x_sample = [0.09326442022999694, 0.5812590520508311, 1.040490143783586, 1.5504427746047338, 2.1589557183817036, 2.6235357787018407, 2.712578091093361, 2.7379109336528167, 3.0339662651841186, 3.147676812083248, 3.58596337171837, 3.6621496731124314, 3.81130899864203, 3.833092859928872, 4.396611340802901, 4.4481080339256875, 4.609657879057151, 5.399731063412583, 5.54299720786794, 5.764084730699906]; y_sample = func(x_sample); # 建立顺序神经网络层次模型 model = Sequential(); model.add(Dense(10, input_dim=1, init='uniform', activation='relu')); model.add(Dense(1, init='uniform', activation='tanh')); plt.ion(); #开启interactive mode 成功的关键函数 fig = plt.figure(1); for i in range(100): filepath="E:/Model/weights-improvement-" + str(i + 1) + ".hdf5"; model.load_weights(filepath); #测试数据 x_new = np.linspace(low, up, 1000); y_new = getfit(model,x_new); # 显示数据 plt.clf(); plt.plot(x,y); plt.scatter(x_sample, y_sample); plt.plot(x_new,y_new); ffpath = "E:/imgs/" + str(i) + ".jpg-600"; plt.savefig(ffpath); plt.pause(0.01)       # 暂停0.01秒 ani = animation.FuncAnimation(plt.figure(2), update,range(100),init_func=init, interval=500); ani.save("E:/test.gif",writer='pillow'); plt.ioff() 

以上所述是小编给大家介绍的matplotlib动态显示详解整合,希望对大家有所帮助,如果大家有任何疑问请给我留言,小编会及时回复大家的。在此也非常感谢大家对gaodaima搞代码网网站的支持!

以上就是【python】matplotlib动态显示详解的详细内容,更多请关注gaodaima搞代码网其它相关文章!


搞代码网(gaodaima.com)提供的所有资源部分来自互联网,如果有侵犯您的版权或其他权益,请说明详细缘由并提供版权或权益证明然后发送到邮箱[email protected],我们会在看到邮件的第一时间内为您处理,或直接联系QQ:872152909。本网站采用BY-NC-SA协议进行授权
转载请注明原文链接:【python】matplotlib动态显示详解

喜欢 (0)
[搞代码]
分享 (0)
发表我的评论
取消评论

表情 贴图 加粗 删除线 居中 斜体 签到

Hi,您需要填写昵称和邮箱!

  • 昵称 (必填)
  • 邮箱 (必填)
  • 网址