• 欢迎访问搞代码网站,推荐使用最新版火狐浏览器和Chrome浏览器访问本网站!
  • 如果您觉得本站非常有看点,那么赶紧使用Ctrl+D 收藏搞代码吧

用pandas中的DataFrame时选取行或列的方法

python 搞代码 4年前 (2022-01-07) 44次浏览 已收录 0个评论

今天小编就为大家分享一篇用pandas中的DataFrame时选取行或列的方法,具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧

如下所示:

 import numpy as np import pandas as pd from pandas import Sereis, DataFrame ser = Series(np.arange(3.)) data = DataFrame(np.arange(16).reshape(4,4),index=list('abcd'),columns=list('wxyz')) data['w'] #选择表格中的'w'列,使用类字典属性,返回的是Series类型 data.w  #选择表格中的'w'列,使用点属性,返回的是Series类型 data[['w']] #选择表格中的'w'列,返回的是DataFrame属性 data[['w','z']] #选择表格中的'w'、'z'列 data[0:2] #返回第1行到第2行的所有行,前闭后开,包括前不包括后 data[1:2] #返回第2行,从0计,返回的是单行,通过有前后值的索引形式, #如果采用data[1]则报错 data.ix[1:2] #返回第2行的第三种方法,返回的是DataFrame,跟data[1:2]同 data['a':'b'] #利用index值进行切片,返回的是**前闭后闭**的DataFrame, #即末端是包含的 data.irow(0)  #取data的第一行 data.icol(0)  #取data的第一列 data.head() #返回data的前几行数据,默认为前五行,需要前十行则dta.head(10) data.tail() #返回data的后几行数据,默认为后五行,需要后十行则data.tail(10) ser.iget_value(0) #选取ser序列中的第一个 ser.iget_value(-1) #选取ser序列中的最后一个,这种轴索引包含索引器的series不能采用ser[-1]去获取最后一个,这回引起歧义。 data.iloc[-1]  #选取DataFrame最后一行,返回的是Series data.iloc[-1:]  #选取DataFrame最后一行,返回的是DataFrame data.loc['a',['w','x']]  #返回‘a'行'w'、'x'列,这种用于选取行索引列索引已知 data.iat[1,1]  #选取第二行第二列,用于已知行、列位置的选取。

例子:

 import pandas as pd from pandas import Series, DataFrame import numpy as np data = DataFrame(np.arange(15).reshape(3,5),index=['one','two','three'],columns=['a','b','c','d','e']) data Out[7]: a  b  c  d  e one   0  1  2  3  4 two   5  6  7  8  9 three 10 11 12 13 14 #对列的操作方法有如下几种 data.icol(0)  #选取第一列 E:\Anaconda2\lib\site-packages\spyder\utils\ipython\start_kernel.py:1: FutureWarning: icol(i) is deprecated. Please use .iloc[:,i] # -*- coding: utf-8 -*- Out[35]: one    0 two    5 three  10 Name: a, dtype: int32 data['a'] Out[8]: one    0 two    5 three  10 Name: a, dtype: int32 data.a Out[9]: one    0 two    5 three  10 Name: a, dtype: int32 data[['a']] Out[10]: a one   0 two   5 three 10 data.ix[:,[0,1,2]] #不知道列名只知道列的位置时 Out[13]: a  b  c one   0  1  2 two   5  6  7 three 10 11 12 data.ix[1,[0]] #选择第2行第1列的值 Out[14]: a  5 Name: two, dtype: int32 data.ix[[1,2],[0]]  #选择第2,3行第1列的值 Out[15]: a two   5 three 10 data.ix[1:3,[0,2]] #选择第2-4行第1、3列的值 Out[17]: a  c two   5  7 three 10 12 data.ix[1:2,2:4] #选择第2-3行,3-5(不包括5)列的值 Out[29]: c d two 7 8 data.ix[data.a>5,3] Out[30]: three  13 Name: d, dtype: int32 data.ix[data.b>6,3:4] #选择'b'列中大于6所在的行中的第4列,有点拗口 Out[31]: d three 13 data.ix[<span style="color:transparent">来源gaodai#ma#com搞*代#码网</span>data.a>5,2:4] #选择'a'列中大于5所在的行中的第3-5(不包括5)列 Out[32]: c  d three 12 13 data.ix[data.a>5,[2,2,2]] #选择'a'列中大于5所在的行中的第2列并重复3次 Out[33]: c  c  c three 12 12 12 #还可以行数或列数跟行名列名混着用 data.ix[1:3,['a','e']] Out[24]: a  e two   5  9 three 10 14 data.ix['one':'two',[2,1]] Out[25]: c b one 2 1 two 7 6 data.ix[['one','three'],[2,2]] Out[26]: c  c one   2  2 three 12 12 data.ix['one':'three',['a','c']] Out[27]: a  c one   0  2 two   5  7 three 10 12 data.ix[['one','one'],['a','e','d','d','d']] Out[28]: a e d d d one 0 4 3 3 3 one 0 4 3 3 3 #对行的操作有如下几种: data[1:2] #(不知道列索引时)选择第2行,不能用data[1],可以用data.ix[1] Out[18]: a b c d e two 5 6 7 8 9 data.irow(1)  #选取第二行 E:\Anaconda2\lib\site-packages\spyder\utils\ipython\start_kernel.py:1: FutureWarning: irow(i) is deprecated. Please use .iloc[i] # -*- coding: utf-8 -*- Out[36]: a  5 b  6 c  7 d  8 e  9 Name: two, dtype: int32 data.ix[1]  #选择第2行 Out[20]: a  5 b  6 c  7 d  8 e  9 Name: two, dtype: int32 data['one':'two'] #当用已知的行索引时为前闭后闭区间,这点与切片稍有不同。 Out[22]: a b c d e one 0 1 2 3 4 two 5 6 7 8 9 data.ix[1:3] #选择第2到4行,不包括第4行,即前闭后开区间。 Out[23]: a  b  c  d  e two   5  6  7  8  9 three 10 11 12 13 14 data.ix[-1:] #取DataFrame中最后一行,返回的是DataFrame类型,**注意**这种取法是有使用条件的,只有当行索引不是数字索引时才可以使用,否则可以选用`data[-1:]`--返回DataFrame类型或`data.irow(-1)`--返回Series类型 Out[11]: a  b  c  d  e three 10 11 12 13 14 data[-1:] #跟上面一样,取DataFrame中最后一行,返回的是DataFrame类型 Out[12]: a  b  c  d  e three 10 11 12 13 14 data.ix[-1] #取DataFrame中最后一行,返回的是Series类型,这个一样,行索引不能是数字时才可以使用 Out[13]: a  10 b  11 c  12 d  13 e  14 Name: three, dtype: int32 data.tail(1)  #返回DataFrame中的最后一行 data.head(1)  #返回DataFrame中的第一行

最近处理数据时发现当pd.read_csv()数据时有时候会有读取到未命名的列,且该列也用不到,一般是索引列被换掉后导致的,有强迫症的看着难受,这时候dataframe.drop([columns,])是没法处理的,怎么办呢,

最笨的方法是直接给列索引重命名:

 data6 Unnamed: 0 high  symbol time date 2016-11-01 0  3317.4 IF1611 18:10:44.8 2016-11-01 1  3317.4 IF1611 06:01:04.5 2016-11-01 2  3317.4 IF1611 07:46:25.5 2016-11-01 3  3318.4 IF1611 09:30:04.0 2016-11-01 4  3321.8 IF1611 09:31:04.0 data6.columns = list('abcd') data6 a  b  c  d date 2016-11-01 0  3317.4 IF1611 18:10:44.8 2016-11-01 1  3317.4 IF1611 06:01:04.5 2016-11-01 2  3317.4 IF1611 07:46:25.5 2016-11-01 3  3318.4 IF1611 09:30:04.0 2016-11-01 4  3321.8 IF1611 09:31:04.0 

以上这篇用pandas中的DataFrame时选取行或列的方法就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持gaodaima搞代码网

以上就是用pandas中的DataFrame时选取行或列的方法的详细内容,更多请关注gaodaima搞代码网其它相关文章!


搞代码网(gaodaima.com)提供的所有资源部分来自互联网,如果有侵犯您的版权或其他权益,请说明详细缘由并提供版权或权益证明然后发送到邮箱[email protected],我们会在看到邮件的第一时间内为您处理,或直接联系QQ:872152909。本网站采用BY-NC-SA协议进行授权
转载请注明原文链接:用pandas中的DataFrame时选取行或列的方法
喜欢 (0)
[搞代码]
分享 (0)
发表我的评论
取消评论

表情 贴图 加粗 删除线 居中 斜体 签到

Hi,您需要填写昵称和邮箱!

  • 昵称 (必填)
  • 邮箱 (必填)
  • 网址