上篇文章我们讲诉了map 和lambda函数的使用,本文我们继续来看看reduce和filter函数,有需要的朋友可以参考下
上一讲和本讲的标题是“大话题小函数”,所谓大话题,就是这些函数如果溯源,都会找到听起来更高大上的东西。这种思维方式绝对我坚定地继承了中华民族的优良传统的。自从天朝的臣民看到英国人开始踢足球,一直到现在所谓某国勃起了,都一直在试图论证足球起源于该朝的前前前朝的某国时代,并且还搬出了那时候的一个叫做高俅的球星来论证,当然了,勃起的某国是挡不住该国家队在世界杯征程上的阳痿,只能用高俅来意淫一番了。这种思维方式,我是坚定地继承,因为在我成长过程中,它一直被奉为优良传统。阿Q本来是姓赵的,和赵老爷是本家,比秀才要长三辈,虽然被赵老爷打了嘴。
废话少说,书接前文,已经研究了map,下面来看reduce。
忍不住还得来点废话。不知道看官是不是听说过MapReduc,如果没有,那么Hadoop呢?如果还没有,就google一下。下面是我从维基百科上抄下来的,共赏之。
不用管是不是看懂,总之又可以用开头的思想意淫一下了,原来今天要鼓捣的这个reduce还跟大数据有关呀。不管怎么样,你有梦一般的感觉就行。
reduce
回到现实,清醒一下,继续敲代码:
15
请看官仔细观察,是否能够看出是如何运算的呢?画一个图:
还记得map是怎么运算的吗?忘了?看代码:
>>> list2 = [9,8,7,6,5,4,3,2,1]
>>来源gao@daima#com搞(%代@#码网> map(lambda x,y: x+y, list1,list2)
[10, 10, 10, 10, 10, 10, 10, 10, 10]
看官对比一下,就知道两个的区别了。原来map是上下运算,reduce是横着逐个元素进行运算。
权威的解释来自官网:
Apply function of two arguments cumulatively to the items of iterable, from left to right, so as to reduce the iterable to a single value. For example, reduce(lambda x, y: x+y, [1, 2, 3, 4, 5]) calculates ((((1+2)+3)+4)+5). The left argument, x, is the accumulated value and the right argument, y, is the update value from the iterable. If the optional initializer is present, it is placed before the items of the iterable in the calculation, and serves as a default when the iterable is empty. If initializer is not given and iterable contains only one item, the first item is returned. Roughly equivalent to:
it = iter(iterable)
if initializer is None:
try:
initializer = next(it)
except StopIteration:
raise TypeError(‘reduce() of empty sequence with no initial value’)
accum_value = initializer
for x in it:
accum_value = function(accum_value, x)
return accum_value
如果用我们熟悉的for循环来做上面reduce的事情,可以这样来做:
>>> lst
[1, 2, 3, 4, 5]
>>> r = 0
>>> for i in range(len(lst)):
… r += lst[i]
…
>>> r
15
for普世的,reduce是简洁的。
为了锻炼思维,看这么一个问题,有两个list,a = [3,9,8,5,2],b=[1,4,9,2,6],计算:a[0]b[0]+a1b1+…的结果。
[3, 9, 8, 5, 2]
>>> b
[1, 4, 9, 2, 6]
>>> zip(a,b) #复习一下zip,下面的方法中要用到
[(3, 1), (9, 4), (8, 9), (5, 2), (2, 6)]
>>> sum(x*y for x,y in zip(a,b)) #解析后直接求和
133
>>> new_list = [x*y for x,y in zip(a,b)] #可以看做是上面方法的分布实施
>>> #这样解析也可以:new_tuple = (x*y for x,y in zip(a,b))
>>> new_list
[3, 36, 72, 10, 12]
>>> sum(new_list) #或者:sum(new_tuple)
133
>>> reduce(lambda sum,(x,y): sum+x*y,zip(a,b),0) #这个方法是在耍酷呢吗?
133
>>> from operator import add,mul #耍酷的方法也不止一个
>>> reduce(add,map(mul,a,b))
133
>>> reduce(lambda x,y: x+y, map(lambda x,y: x*y, a,b)) #map,reduce,lambda都齐全了,更酷吗?
133
以上就是跟老齐学Python之大话题小函数(2)的详细内容,更多请关注gaodaima搞代码网其它相关文章!