• 欢迎访问搞代码网站,推荐使用最新版火狐浏览器和Chrome浏览器访问本网站!
  • 如果您觉得本站非常有看点,那么赶紧使用Ctrl+D 收藏搞代码吧

基于sklearn实现Bagging算法(python)

python 搞代码 4年前 (2022-01-07) 15次浏览 已收录 0个评论

这篇文章主要为大家详细介绍了基于sklearn实现Bagging算法,文中示例代码介绍的非常详细,具有一定的参考价值,感兴趣的小伙伴们可以参考一下

本文使用的数据类型是数值型,每一个样本6个特征表示,所用的数据如图所示:

图中A,B,C,D,E,F列表示六个特征,G表示样本标签。每一行数据即为一个样本的六个特征和标签。

实现Bagging算法的代码如下:

 from sklearn.ensemble import BaggingClassifier from sklearn.tree import D<div style="color:transparent">来源gaodai^.ma#com搞#代!码网</div>ecisionTreeClassifier from sklearn.preprocessing import StandardScaler import csv from sklearn.cross_validation import train_test_split from sklearn.metrics import accuracy_score from sklearn.metrics import confusion_matrix from sklearn.metrics import classification_report data=[] traffic_feature=[] traffic_target=[] csv_file = csv.reader(open('packSize_all.csv')) for content in csv_file: content=list(map(float,content)) if len(content)!=0: data.append(content) traffic_feature.append(content[0:6])//存放数据集的特征 traffic_target.append(content[-1])//存放数据集的标签 print('data=',data) print('traffic_feature=',traffic_feature) print('traffic_target=',traffic_target) scaler = StandardScaler() # 标准化转换 scaler.fit(traffic_feature) # 训练标准化对象 traffic_feature= scaler.transform(traffic_feature) # 转换数据集 feature_train, feature_test, target_train, target_test = train_test_split(traffic_feature, traffic_target, test_size=0.3,random_state=0) tree=DecisionTreeClassifier(criterion='entropy', max_depth=None) # n_estimators=500:生成500个决策树 clf = BaggingClassifier(base_estimator=tree, n_estimators=500, max_samples=1.0, max_features=1.0, bootstrap=True, bootstrap_features=False, n_jobs=1, random_state=1) clf.fit(feature_train,target_train) predict_results=clf.predict(feature_test) print(accuracy_score(predict_results, target_test)) conf_mat = confusion_matrix(target_test, predict_results) print(conf_mat) print(classification_report(target_test, predict_results))

运行结果如图所示:

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持gaodaima搞代码网

以上就是基于sklearn实现Bagging算法(python)的详细内容,更多请关注gaodaima搞代码网其它相关文章!


搞代码网(gaodaima.com)提供的所有资源部分来自互联网,如果有侵犯您的版权或其他权益,请说明详细缘由并提供版权或权益证明然后发送到邮箱[email protected],我们会在看到邮件的第一时间内为您处理,或直接联系QQ:872152909。本网站采用BY-NC-SA协议进行授权
转载请注明原文链接:基于sklearn实现Bagging算法(python)
喜欢 (0)
[搞代码]
分享 (0)
发表我的评论
取消评论

表情 贴图 加粗 删除线 居中 斜体 签到

Hi,您需要填写昵称和邮箱!

  • 昵称 (必填)
  • 邮箱 (必填)
  • 网址