• 欢迎访问搞代码网站,推荐使用最新版火狐浏览器和Chrome浏览器访问本网站!
  • 如果您觉得本站非常有看点,那么赶紧使用Ctrl+D 收藏搞代码吧

浅谈Pytorch 定义的网络结构层能否重复使用

python 搞代码 4年前 (2022-01-07) 44次浏览 已收录 0个评论
文章目录[隐藏]

这篇文章主要介绍了Pytorch定义的网络结构层能否重复使用的操作,具有很好的参考价值,希望对大家有所帮助。如有错误或未考虑完全的地方,望不吝赐教

前言:最近在构建网络的时候,有一些层参数一样,于是就没有定义新的层,直接重复使用了原来已经有的层,发现效果和模型大小都没有什么变化,心中产生了疑问:定义的网络结构层能否重复使用?因此接下来利用了一个小模型网络实验了一下。

一、网络结构一:(连续使用相同的层)

1、网络结构如下所示:

 class Cnn(nn.Module): def __init__(self): super(Cnn, self).__init__() self.conv1 = nn.Sequential( nn.Conv2d( in_channels = 3,  #(, 64, 64, 3) out_channels = 16, kernel_size = 3, stride = 1, padding = 1 ),   ##( , 64, 64, 16) nn.ReLU(), nn.MaxPool2d(kernel_size = 2) )  ##( , 32, 32, 16) self.conv2 = nn.Sequential( nn.Conv2d(16,32,3,1,1), nn.ReLU(), nn.MaxPool2d(2) ) self.conv3 = nn.Sequential( nn.Conv2d(32,64,3,1,1), nn.ReLU(), nn.MaxPool2d(2) ) self.conv4 = nn.Sequential( nn.Conv2d(64,64,3,1,1), nn.BatchNorm2d(64), nn.ReLU(), ) self.out = nn.Linear(64*8*8, 6) def forward(self, x): x = self.conv1(x) x = self.conv2(x) x = self.conv3(x) x = self.conv4(x) x = x.view(x.size(0),-1) out = self.out(x) return out 

定义了一个卷积层conv4,接下来围绕着这个conv4做一些变化。打印一下网络结构:

和想象中的一样,其中

 nn.BatchNorm2d # 对应上面的 module.conv4.1.*

激活层没有参数所以直接跳过

2、改变一下forward():

连续使用两个conv4层:

 def forward(self, x): x = self.conv1(x) x = self.conv2(x) x = self.conv3(x) x = self.conv4(x) x = self.conv4(x) x = x.view(x.size(0),-1) out = self.out(x) return out 

打印网络结构:

和1.1中的结构一样,conv4没有生效。

二、网络结构二:(间断使用相同的层)

网络结构多定义一个和conv4一样的层conv5,同时间断使用conv4:

 self.conv4 = nn.Sequential( nn.Conv2d(64,64,3,1,1), nn.BatchNorm2d(64), nn.ReLU(), ) self.conv5 = nn.Sequential( nn.Conv2d(64,64,3,1,1), nn.BatchNorm2d(64), nn.ReLU(), ) self.out = nn.Linear(64*8*8, 6) def forward(self, x): x = self.conv1(x) x = self.conv2(x) x = self.conv3(x) x = self.conv4(x) x = self.conv5(x) x = self.conv4(x) x = x.view(x.size(0),-1) out = self.out(x) return out 

打印网络结构:

果不其然,新定义的conv5有效,conv4还是没有生效。

本来以为,使用重复定义的层会像conv4.0,conv4.1,…这样下去,看样子是不能重复使用定义的层。

Pytorch_5.7 使

来源gaodai.ma#com搞#代!码网

用重复元素的网络–VGG

5.7.1 VGG块

VGG引入了Block的概念 作为模型的基础模块

 import time import torch from torch import nn, optim import pytorch_deep as pyd device = torch.device('cuda' if torch.cuda.is_available() else 'cpu') def vgg_block(num_convs, in_channels, out_channels): blk = [] for i in range(num_convs): if i == 0: blk.append(nn.Conv2d(in_channels, out_channels,kernel_size=3, padding=1)) else: blk.append(nn.Conv2d(out_channels, out_channels,kernel_size=3, padding=1)) blk.append(nn.ReLU()) blk.append(nn.MaxPool2d(kernel_size=2, stride=2)) # 这⾥会使宽⾼减半 return nn.Sequential(*blk) 

实现VGG_11网络

8个卷积层和3个全连接

 def vgg_11(conv_arch, fc_features, fc_hidden_units=4096): net = nn.Sequential() # 卷积层部分 for i, (num_convs, in_channels, out_channels) in enumerate(conv_arch): # 每经过⼀个vgg_block都会使宽⾼减半 net.add_module("vgg_block_" + str(i+1),vgg_block(num_convs, in_channels, out_channels)) # 全连接层部分 net.add_module("fc", nn.Sequential( pyd.FlattenLayer(), nn.Linear(fc_features,fc_hidden_units), nn.ReLU(), nn.Dropout(0.5), nn.Linear(fc_hidden_units,fc_hidden_units), nn.ReLU(), nn.Dropout(0.5), nn.Linear(fc_hidden_units, 10) )) return net
 ratio = 8 small_conv_arch = [(1, 1, 64//ratio), (1, 64//ratio, 128//ratio),(2, 128//ratio, 256//ratio),(2, 256//ratio, 512//ratio), (2, 512//ratio,512//ratio)] fc_features = 512 * 7 * 7 # c * fc_hidden_units = 4096 # 任意 net = vgg_11(small_conv_arch, fc_features // ratio, fc_hidden_units //ratio) print(net)
 Sequential( (vgg_block_1): Sequential( (0): Conv2d(1, 8, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1)) (1): ReLU() (2): MaxPool2d(kernel_size=2, stride=2, padding=0, dilation=1, ceil_mode=False) ) (vgg_block_2): Sequential( (0): Conv2d(8, 16, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1)) (1): ReLU() (2): MaxPool2d(kernel_size=2, stride=2, padding=0, dilation=1, ceil_mode=False) ) (vgg_block_3): Sequential( (0): Conv2d(16, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1)) (1): ReLU() (2): Conv2d(32, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1)) (3): ReLU() (4): MaxPool2d(kernel_size=2, stride=2, padding=0, dilation=1, ceil_mode=False) ) (vgg_block_4): Sequential( (0): Conv2d(32, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1)) (1): ReLU() (2): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1)) (3): ReLU() (4): MaxPool2d(kernel_size=2, stride=2, padding=0, dilation=1, ceil_mode=False) ) (vgg_block_5): Sequential( (0): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1)) (1): ReLU() (2): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1)) (3): ReLU() (4): MaxPool2d(kernel_size=2, stride=2, padding=0, dilation=1, ceil_mode=False) ) (fc): Sequential( (0): FlattenLayer() (1): Linear(in_features=3136, out_features=512, bias=True) (2): ReLU() (3): Dropout(p=0.5) (4): Linear(in_features=512, out_features=512, bias=True) (5): ReLU() (6): Dropout(p=0.5) (7): Linear(in_features=512, out_features=10, bias=True) ) )

训练数据

 batch_size = 32 # 如出现“out of memory”的报错信息,可减⼩batch_size或resize train_iter, test_iter = pyd.load_data_fashion_mnist(batch_size,resize=224) lr, num_epochs = 0.001, 5 optimizer = torch.optim.Adam(net.parameters(), lr=lr) pyd.train_ch5(net, train_iter, test_iter, batch_size, optimizer,device, num_epochs)
 training on  cuda epoch 1, loss 0.5166, train acc 0.810, test acc 0.872,time 57.6 sec epoch 2, loss 0.1557, train acc 0.887, test acc 0.902,time 57.9 sec epoch 3, loss 0.0916, train acc 0.900, test acc 0.907,time 57.7 sec epoch 4, loss 0.0609, train acc 0.912, test acc 0.915,time 57.6 sec epoch 5, loss 0.0449, train acc 0.919, test acc 0.914,time 57.4 sec 

以上为个人经验,希望能给大家一个参考,也希望大家多多支持gaodaima搞代码网

以上就是浅谈Pytorch 定义的网络结构层能否重复使用的详细内容,更多请关注gaodaima搞代码网其它相关文章!


搞代码网(gaodaima.com)提供的所有资源部分来自互联网,如果有侵犯您的版权或其他权益,请说明详细缘由并提供版权或权益证明然后发送到邮箱[email protected],我们会在看到邮件的第一时间内为您处理,或直接联系QQ:872152909。本网站采用BY-NC-SA协议进行授权
转载请注明原文链接:浅谈Pytorch 定义的网络结构层能否重复使用

喜欢 (0)
[搞代码]
分享 (0)
发表我的评论
取消评论

表情 贴图 加粗 删除线 居中 斜体 签到

Hi,您需要填写昵称和邮箱!

  • 昵称 (必填)
  • 邮箱 (必填)
  • 网址