• 欢迎访问搞代码网站,推荐使用最新版火狐浏览器和Chrome浏览器访问本网站!
  • 如果您觉得本站非常有看点,那么赶紧使用Ctrl+D 收藏搞代码吧

pytorch 自定义卷积核进行卷积操作方式

python 搞代码 4年前 (2022-01-07) 80次浏览 已收录 0个评论

今天小编就为大家分享一篇pytorch 自定义卷积核进行卷积操作方式,具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧

一 卷积操作:在pytorch搭建起网络时,大家通常都使用已有的框架进行训练,在网络中使用最多就是卷积操作,最熟悉不过的就是

 torch.nn.Conv2d(in_channels, out_channels, kernel_size, stride=1, padding=0, dilation=1, groups=1, bias=True)

通过上面的输入发现想自定义自己的卷积核,比如高斯核,发现是行不通的,因为上面的参数里面只有卷积核尺寸,而权值weight是通过梯度一直更新的,是不确定的。

二 需要自己定义卷积核的目的:目前是需要通过一个VGG网络提取特征特后需要对其进行高斯卷积,卷积来源gaodai$ma#com搞$代*码*网后再继续输入到网络中训练。

三 解决方案。使用

 torch.nn.functional.conv2d(input, weight, bias=None, stride=1, padding=0, dilation=1, groups=1)

这里注意下weight的参数。与nn.Conv2d的参数不一样

可以发现F.conv2d可以直接输入卷积的权值weight,也就是卷积核。那么接下来就要首先生成一个高斯权重了。这里不直接一步步写了,直接输入就行。

 kernel = [[0.03797616, 0.044863533, 0.03797616], [0.044863533, 0.053, 0.044863533], [0.03797616, 0.044863533, 0.03797616]]

四 完整代码

 class GaussianBlur(nn.Module): def __init__(self): super(GaussianBlur, self).__init__() kernel = [[0.03797616, 0.044863533, 0.03797616], [0.044863533, 0.053, 0.044863533], [0.03797616, 0.044863533, 0.03797616]] kernel = torch.FloatTensor(kernel).unsqueeze(0).unsqueeze(0) self.weight = nn.Parameter(data=kernel, requires_grad=False) def forward(self, x): x1 = x[:, 0] x2 = x[:, 1] x3 = x[:, 2] x1 = F.conv2d(x1.unsqueeze(1), self.weight, padding=2) x2 = F.conv2d(x2.unsqueeze(1), self.weight, padding=2) x3 = F.conv2d(x3.unsqueeze(1), self.weight, padding=2) x = torch.cat([x1, x2, x3], dim=1) return x

这里为了网络模型需要写成了一个类,这里假设输入的x也就是经过网络提取后的三通道特征图(当然不一定是三通道可以是任意通道)

如果是任意通道的话,使用torch.expand()向输入的维度前面进行扩充。如下:

 def blur(self, tensor_image): kernel = [[0.03797616, 0.044863533, 0.03797616], [0.044863533, 0.053, 0.044863533], [0.03797616, 0.044863533, 0.03797616]] min_batch=tensor_image.size()[0] channels=tensor_image.size()[1] out_channel=channels kernel = torch.FloatTensor(kernel).expand(out_channel,channels,3,3) self.weight = nn.Parameter(data=kernel, requires_grad=False) return F.conv2d(tensor_image,self.weight,1,1)

以上这篇pytorch 自定义卷积核进行卷积操作方式就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持gaodaima搞代码网

以上就是pytorch 自定义卷积核进行卷积操作方式的详细内容,更多请关注gaodaima搞代码网其它相关文章!


搞代码网(gaodaima.com)提供的所有资源部分来自互联网,如果有侵犯您的版权或其他权益,请说明详细缘由并提供版权或权益证明然后发送到邮箱[email protected],我们会在看到邮件的第一时间内为您处理,或直接联系QQ:872152909。本网站采用BY-NC-SA协议进行授权
转载请注明原文链接:pytorch 自定义卷积核进行卷积操作方式

喜欢 (0)
[搞代码]
分享 (0)
发表我的评论
取消评论

表情 贴图 加粗 删除线 居中 斜体 签到

Hi,您需要填写昵称和邮箱!

  • 昵称 (必填)
  • 邮箱 (必填)
  • 网址