• 欢迎访问搞代码网站,推荐使用最新版火狐浏览器和Chrome浏览器访问本网站!
  • 如果您觉得本站非常有看点,那么赶紧使用Ctrl+D 收藏搞代码吧

pytorch中DataLoader()过程中遇到的一些问题

python 搞代码 4年前 (2022-01-07) 33次浏览 已收录 0个评论
文章目录[隐藏]

这篇文章主要介绍了pytorch中DataLoader()过程中遇到的一些问题,具有很好的参考价值,希望对大家有所帮助。如有错误或未考虑完全的地方,望不吝赐教

如下所示:

RuntimeError: stack expects each tensor to be equal size, but got [3, 60, 32] at entry 0 and [3, 54, 32] at entry 2

 train_dataset = datasets.ImageFolder( traindir, transforms.Compose([ transforms.Resize((224)) ###

原因是

transforms.Resize() 的参数设置问题,改为如下设置就可以了

 train_dataset = datasets.ImageFolder( traindir, transforms.Compose([ transforms.Resize((224,224)),

同理,val_dataset中也调整为transforms.Resize((224,224))。

补充:pytorch之dataloader深入剖析

– dataloader本质是一个可迭代对象,使用iter()访问,不能使用next()访问;

– 使用iter(dataloader)返回的是一个迭代器,然后可以使用next访问;

– 也可以使用`for inputs, labels in dataloaders`进行可迭代对象的访问;

– 一般我们实现一个datasets对象,传入到dataloader中;然后内部使用yeild返回每一次batch的数据;

① DataLoader本质上就是一个iterable(跟python的内置类型list等一样),并利用多进程来加速batch data的处理,使用yield来使用有限的内存 ​

② Queue的特点

当队列里面没有数据时: queue.get() 会阻塞, 阻塞的时候,其它进程/线程如果有queue.put() 操作,本线程/进程会被通知,然后就可以 get 成功。

当数据满了: queue.put() 会阻塞

③ DataLoader是一个高效,简洁,直观的网络输入数据结构,便于使用和扩展

输入数据PipeLine

pytorch 的数据加载到模型的操作顺序是这样的:

① 创建一个 Dataset 对象

② 创建一个 DataLoader 对象

③ 循环这个 DataLoader 对象,将img, label加载到模型中进行训练

 dataset = MyDataset() dataloader = DataLoader(dataset) num_epoches = 100 for epoch in range(num_epoches): for img, label in dataloader: ....

所以,作为直接对数据进入模型中的关键一步, DataLoader非常重要。

首先简单介绍一下DataLoader,它是PyTorch中数据读取的一个重要接口,该接口定义在dataloader.py中,只要是用PyTorch来训练模型基本都会用到该接口(除非用户重写…),该接口的目的:将自定义的Dataset根据batch size大小、是否shuffle等封装成一个Batch Size大小的Tensor,用于后面的训练。

官方对DataLoader的说明是:“数据加载由数据集和采样器组成,基于python的单、多进程的iterators来处理数据。”关于iterator和iterable的区别和概念请自行查阅,在实现中的差别就是iterators有__iter__和__next__方法,而iterable只有__iter__方法。

1.DataLoader

先介绍一下DataLoader(object)的参数:

dataset(Dataset): 传入的数据集

batch_size(int, optional): 每个batch有多少个样本

shuffle(bool, optional): 在每个epoch开始的时候,对数据进行重新排序

sampler(Sampler, optional): 自定义从数据集中取样本的策略,如果指定这个参数,那么shuffle必须为False

batch_sampler(Sampler, optional): 与sampler类似,但是一次只返回一个batch的indices(索引),需要注意的是,一旦指定了这个参数,那么batch_size,shuffle,sampler,drop_last就不能再制定了(互斥――Mutually exclusive)

num_workers (int, optional): 这个参数决定了有几个进程来处理data loading。0意味着所有的数据都会被load进主进程。(默认为0)

collate_fn (callable, optional): 将一个list的sample组成一个mini-batch的函数

pin_memory (bool, optional): 如果设置为True,那么data loader将会在返回它们之前,将tensors拷贝到CUDA中的固定内存(CUDA pinned memory)中.

drop_last (bool, optional): 如果设置为True:这个是对最后的未完成的batch来说的,比如你的batch_size设置为64,而一个epoch只有100个样本,那么训练的时候后面的36个就被扔掉了…

如果为False(默认),那么会继续正常执行,只是最后的batch_size会小一点。

timeout(numeric, optional): 如果是正数,表明等待从worker进程中收集一个batch等待的时间,若超出设定的时间还没有收集到,那就不收集这个内容了。这个numeric应总是大于等于0。默认为0

worker_init_fn (callable, optional): 每个worker初始化函数 If not None, this will be called on each

 worker subprocess with the worker id (an int in [0, num_workers - 1]) as input, after seeding and before data loading. (default: None) 

– 首先dataloader初始化时得到datasets的采样list

 class DataLoader(object): r""" Data loader. Combines a dataset and a sampler, and provides single- or multi-process iterators over the dataset. Arguments: dataset (Dataset): dataset from which to load the data. batch_size (int, optional): how many samples per b<mark style="color:transparent">来源gaodaimacom搞#^代%!码&网</mark>atch to load (default: 1). shuffle (bool, optional): set to ``True`` to have the data reshuffled at every epoch (default: False). sampler (Sampler, optional): defines the strategy to draw samples from the dataset. If specified, ``shuffle`` must be False. batch_sampler (Sampler, optional): like sampler, but returns a batch of indices at a time. Mutually exclusive with batch_size, shuffle, sampler, and drop_last. num_workers (int, optional): how many subprocesses to use for data loading. 0 means that the data will be loaded in the main process. (default: 0) collate_fn (callable, optional): merges a list of samples to form a mini-batch. pin_memory (bool, optional): If ``True``, the data loader will copy tensors into CUDA pinned memory before returning them. drop_last (bool, optional): set to ``True`` to drop the last incomplete batch, if the dataset size is not divisible by the batch size. If ``False`` and the size of dataset is not divisible by the batch size, then the last batch will be smaller. (default: False) timeout (numeric, optional): if positive, the timeout value for collecting a batch from workers. Should always be non-negative. (default: 0) worker_init_fn (callable, optional): If not None, this will be called on each worker subprocess with the worker id (an int in ``[0, num_workers - 1]``) as input, after seeding and before data loading. (default: None) .. note:: By default, each worker will have its PyTorch seed set to ``base_seed + worker_id``, where ``base_seed`` is a long generated by main process using its RNG. However, seeds for other libraies may be duplicated upon initializing workers (w.g., NumPy), causing each worker to return identical random numbers. (See :ref:`dataloader-workers-random-seed` section in FAQ.) You may use ``torch.initial_seed()`` to access the PyTorch seed for each worker in :attr:`worker_init_fn`, and use it to set other seeds before data loading. .. warning:: If ``spawn`` start method is used, :attr:`worker_init_fn` cannot be an unpicklable object, e.g., a lambda function. """ __initialized = False def __init__(self, dataset, batch_size=1, shuffle=False, sampler=None, batch_sampler=None, num_workers=0, collate_fn=default_collate, pin_memory=False, drop_last=False, timeout=0, worker_init_fn=None): self.dataset = dataset self.batch_size = batch_size self.num_workers = num_workers self.collate_fn = collate_fn self.pin_memory = pin_memory self.drop_last = drop_last self.timeout = timeout self.worker_init_fn = worker_init_fn if timeout  1 or shuffle or sampler is not None or drop_last: raise ValueError('batch_sampler option is mutually exclusive ' 'with batch_size, shuffle, sampler, and ' 'drop_last') self.batch_size = None self.drop_last = None if sampler is not None and shuffle: raise ValueError('sampler option is mutually exclusive with ' 'shuffle') if self.num_workers </div><p>其中:RandomSampler,BatchSampler已经得到了采用batch数据的index索引;yield batch机制已经在!!!</p><div class="gaodaimacode"><pre class="prettyprint linenums"> class RandomSampler(Sampler): r"""Samples elements randomly, without replacement. Arguments: data_source (Dataset): dataset to sample from """ def __init__(self, data_source): self.data_source = data_source def __iter__(self): return iter(torch.randperm(len(self.data_source)).tolist()) def __len__(self): return len(self.data_source)
 class BatchSampler(Sampler): r"""Wraps another sampler to yield a mini-batch of indices. Args: sampler (Sampler): Base sampler. batch_size (int): Size of mini-batch. drop_last (bool): If ``True``, the sampler will drop the last batch if its size would be less than ``batch_size`` Example: >>> list(BatchSampler(SequentialSampler(range(10)), batch_size=3, drop_last=False)) [[0, 1, 2], [3, 4, 5], [6, 7, 8], [9]] >>> list(BatchSampler(SequentialSampler(range(10)), batch_size=3, drop_last=True)) [[0, 1, 2], [3, 4, 5], [6, 7, 8]] """ def __init__(self, sampler, batch_size, drop_last): if not isinstance(sampler, Sampler): raise ValueError("sampler should be an instance of " "torch.utils.data.Sampler, but got sampler={}" .format(sampler)) if not isinstance(batch_size, _int_classes) or isinstance(batch_size, bool) or \ batch_size  0 and not self.drop_last: yield batch def __len__(self): if self.drop_last: return len(self.sampler) // self.batch_size else: return (len(self.sampler) + self.batch_size - 1) // self.batch_size

– 其中 _DataLoaderIter(self)输入为一个dataloader对象;如果num_workers=0很好理解,num_workers!=0引入多线程机制,加速数据加载过程;

– 没有多线程时:batch = self.collate_fn([self.dataset[i] for i in indices])进行将index转化为data数据,返回(image,label);self.dataset[i]会调用datasets对象的

__getitem__()方法

– 多线程下,会为每个线程创建一个索引队列index_queues;共享一个worker_result_queue数据队列!在_worker_loop方法中加载数据;

 class _DataLoaderIter(object): r"""Iterates once over the DataLoader's dataset, as specified by the sampler""" def __init__(self, loader): self.dataset = loader.dataset self.collate_fn = loader.collate_fn self.batch_sampler = loader.batch_sampler self.num_workers = loader.num_workers self.pin_memory = loader.pin_memory and torch.cuda.is_available() self.timeout = loader.timeout self.done_event = threading.Event() self.sample_iter = iter(self.batch_sampler) base_seed = torch.LongTensor(1).random_().item() if self.num_workers > 0: self.worker_init_fn = loader.worker_init_fn self.index_queues = [multiprocessing.Queue() for _ in range(self.num_workers)] self.worker_queue_idx = 0 self.worker_result_queue = multiprocessing.SimpleQueue() self.batches_outstanding = 0 self.worker_pids_set = False self.shutdown = False self.send_idx = 0 self.rcvd_idx = 0 self.reorder_dict = {} self.workers = [ multiprocessing.Process( target=_worker_loop, args=(self.dataset, self.index_queues[i], self.worker_result_queue, self.collate_fn, base_seed + i, self.worker_init_fn, i)) for i in range(self.num_workers)] if self.pin_memory or self.timeout > 0: self.data_queue = queue.Queue() if self.pin_memory: maybe_device_id = torch.cuda.current_device() else: # do not initialize cuda context if not necessary maybe_device_id = None self.worker_manager_thread = threading.Thread( target=_worker_manager_loop, args=(self.worker_result_queue, self.data_queue, self.done_event, self.pin_memory, maybe_device_id)) self.worker_manager_thread.daemon = True self.worker_manager_thread.start() else: self.data_queue = self.worker_result_queue for w in self.workers: w.daemon = True  # ensure that the worker exits on process exit w.start() _update_worker_pids(id(self), tuple(w.pid for w in self.workers)) _set_SIGCHLD_handler() self.worker_pids_set = True # prime the prefetch loop for _ in range(2 * self.num_workers): self._put_indices() def __len__(self): return len(self.batch_sampler) def _get_batch(self): if self.timeout > 0: try: return self.data_queue.get(timeout=self.timeout) except queue.Empty: raise RuntimeError('DataLoader timed out after {} seconds'.format(self.timeout)) else: return self.data_queue.get() def __next__(self): if self.num_workers == 0:  # same-process loading indices = next(self.sample_iter)  # may raise StopIteration batch = self.collate_fn([self.dataset[i] for i in indices]) if self.pin_memory: batch = pin_memory_batch(batch) return batch # check if the next sample has already been generated if self.rcvd_idx in self.reorder_dict: batch = self.reorder_dict.pop(self.rcvd_idx) return self._process_next_batch(batch) if self.batches_outstanding == 0: self._shutdown_workers() raise StopIteration while True: assert (not self.shutdown and self.batches_outstanding > 0) idx, batch = self._get_batch() self.batches_outstanding -= 1 if idx != self.rcvd_idx: # store out-of-order samples self.reorder_dict[idx] = batch continue return self._process_next_batch(batch) next = __next__  # Python 2 compatibility def __iter__(self): return self def _put_indices(self): assert self.batches_outstanding <2 * self.num_workers indices none) if is none: return self.index_queues[self.worker_queue_idx].put((self.send_idx, indices)) self.worker_queue_idx=(self.worker_queue_idx + 1) % self.batches_outstanding 1 self.send_idx def _process_next_batch(self, batch): self.rcvd_idx self._put_indices() isinstance(batch, exceptionwrapper): raise batch.exc_type(batch.exc_msg) batch<pre></div><div class="gaodaimacode"><pre class="prettyprint linenums"> def _worker_loop(dataset, index_queue, data_queue, collate_fn, seed, init_fn, worker_id): global _use_shared_memory _use_shared_memory = True # Intialize C side signal handlers for SIGBUS and SIGSEGV. Python signal # module's handlers are executed after Python returns from C low-level # handlers, likely when the same fatal signal happened again already. # https://docs.python.org/3/library/signal.html Sec. 18.8.1.1 _set_worker_signal_handlers() torch.set_num_threads(1) random.seed(seed) torch.manual_seed(seed) if init_fn is not None: init_fn(worker_id) watchdog = ManagerWatchdog() while True: try: r = index_queue.get(timeout=MANAGER_STATUS_CHECK_INTERVAL) except queue.Empty: if watchdog.is_alive(): continue else: break if r is None: break idx, batch_indices = r try: samples = collate_fn([dataset[i] for i in batch_indices]) except Exception: data_queue.put((idx, ExceptionWrapper(sys.exc_info()))) else: data_queue.put((idx, samples)) del samples

– 需要对队列操作,缓存数据,使得加载提速!

以上为个人经验,希望能给大家一个参考,也希望大家多多支持gaodaima搞代码网

以上就是pytorch中DataLoader()过程中遇到的一些问题的详细内容,更多请关注gaodaima搞代码网其它相关文章!


搞代码网(gaodaima.com)提供的所有资源部分来自互联网,如果有侵犯您的版权或其他权益,请说明详细缘由并提供版权或权益证明然后发送到邮箱[email protected],我们会在看到邮件的第一时间内为您处理,或直接联系QQ:872152909。本网站采用BY-NC-SA协议进行授权
转载请注明原文链接:pytorch中DataLoader()过程中遇到的一些问题

喜欢 (0)
[搞代码]
分享 (0)
发表我的评论
取消评论

表情 贴图 加粗 删除线 居中 斜体 签到

Hi,您需要填写昵称和邮箱!

  • 昵称 (必填)
  • 邮箱 (必填)
  • 网址