• 欢迎访问搞代码网站,推荐使用最新版火狐浏览器和Chrome浏览器访问本网站!
  • 如果您觉得本站非常有看点,那么赶紧使用Ctrl+D 收藏搞代码吧

pytorch1.0中torch.nn.Conv2d用法详解

python 搞代码 4年前 (2022-01-07) 21次浏览 已收录 0个评论

今天小编就为大家分享一篇pytorch1.0中torch.nn.Conv2d用法详解,具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧

Conv2d的简单使用

torch 包 nn 中 Conv2d 的用法与 tensorflow 中类似,但不完全一样。

在 torch 中,Conv2d 有几个基本的参数,分别是

in_channels 输入图像的深度

out_channels 输出图像的深度

kernel_size 卷积核大小,正方形卷积只为单个数字

stride 卷积步长,默认为1

padding 卷积是否造成尺寸丢失,1为不丢失

与tensorflow不一样的是,pytorch中的使用更加清晰化,我们可以使用这种方法定义输入与输出图像的深度并同时指定使用的卷积核的大小。

而我们的输入则由经由 Conv2d 定义的参数传入,如下所示:

 # 定义一个输入深度为1,输出为6,卷积核大小为 3*3 的 conv1 变量 self.conv1 = nn.Conv2d(1, 6, 3) # 传入原始输入x,以获得长宽与x相当,深度为6的卷积部分 x = self.conv1(x)

要注意的是,Conv2d中所需要的输入顺序为

batchsize, nChannels, Height, Width

其他的简单使用

同样的,与 Conv2d 类似的函

来源gaodai^.ma#com搞#代!码网

数还有很多,类似 max_pool2d、relu等等,他们的使用方法与 Conv2d 极为类似,如下所示:

 # relu函数的使用 F.relu(self.conv1(x)) # 池化函数的使用 F.max_pool2d(F.relu(self.conv2(x)), 2)

以上这篇pytorch1.0中torch.nn.Conv2d用法详解就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持gaodaima搞代码网

以上就是pytorch1.0中torch.nn.Conv2d用法详解的详细内容,更多请关注gaodaima搞代码网其它相关文章!


搞代码网(gaodaima.com)提供的所有资源部分来自互联网,如果有侵犯您的版权或其他权益,请说明详细缘由并提供版权或权益证明然后发送到邮箱[email protected],我们会在看到邮件的第一时间内为您处理,或直接联系QQ:872152909。本网站采用BY-NC-SA协议进行授权
转载请注明原文链接:pytorch1.0中torch.nn.Conv2d用法详解

喜欢 (0)
[搞代码]
分享 (0)
发表我的评论
取消评论

表情 贴图 加粗 删除线 居中 斜体 签到

Hi,您需要填写昵称和邮箱!

  • 昵称 (必填)
  • 邮箱 (必填)
  • 网址