• 欢迎访问搞代码网站,推荐使用最新版火狐浏览器和Chrome浏览器访问本网站!
  • 如果您觉得本站非常有看点,那么赶紧使用Ctrl+D 收藏搞代码吧

python利用opencv实现颜色检测

python 搞代码 4年前 (2022-01-07) 21次浏览 已收录 0个评论

这篇文章主要为大家详细介绍了python利用opencv实现颜色检测,文中示例代码介绍的非常详细,具有一定的参考价值,感兴趣的小伙伴们可以参考一下

本文实例为大家分享了python利用opencv实现颜色检测的具体代码,供大家参考,具体内容如下

需要实现倒车辅助标记检测的功能,倒车辅助标记颜色已经确定了,所以不需要使用深度学习的方法,那样成本太高了,直接可以使用颜色检测的方法。

1.首先需要确定待检测目标的HSV值

 import cv2 img = cv2.imread('l3.png-600') gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY) hsv = cv2.cvtColor(img, cv2.COLOR_BGR2HSV) def mouse_click(event, x, y, flags, para): if event == cv2.EVENT_LBUTTONDOWN: # 左边鼠标点击 print('PIX:', x, y) print("BGR:", img[y, x]) print("GRAY:", gray[y, x]) print("HSV:", hsv[y, x]) if __name__ == '__main__': cv2.namedWindow("img") cv2.setMouseCallback("img", mouse_click) while True: cv2.imshow('img', img) if cv2.waitKey() == ord('q'): break cv2.destroyAllWindows()

2.然后利用颜色检测,检测出指定目标

 import numpy as np import cv2 font = cv2.FONT_HERSHEY_SIMPLEX lower_red = np.array([0, 127, 128]) # 红色阈值下界 higher_red = np.array([10, 255, 255]<b style="color:transparent">来源gao@dai!ma.com搞$代^码网</b>) # 红色阈值上界 lower_yellow = np.array([15, 230, 230]) # 黄色阈值下界 higher_yellow = np.array([35, 255, 255]) # 黄色阈值上界 lower_blue = np.array([85,240,140]) higher_blue = np.array([100,255,165]) frame=cv2.imread("l3.png-600") img_hsv = cv2.cvtColor(frame, cv2.COLOR_BGR2HSV) mask_red = cv2.inRange(img_hsv, lower_red, higher_red) # 可以认为是过滤出红色部分,获得红色的掩膜 mask_yellow = cv2.inRange(img_hsv, lower_yellow, higher_yellow) # 获得绿色部分掩膜 mask_yellow = cv2.medianBlur(mask_yellow, 7) # 中值滤波 mask_red = cv2.medianBlur(mask_red, 7) # 中值滤波 mask_blue = cv2.inRange(img_hsv, lower_blue, higher_blue) # 获得绿色部分掩膜 mask_blue = cv2.medianBlur(mask_blue, 7) # 中值滤波 #mask = cv2.bitwise_or(mask_green, mask_red) # 三部分掩膜进行按位或运算 print(mask_red) cnts1, hierarchy1 = cv2.findContours(mask_red, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_NONE) # 轮廓检测 #红色 cnts2, hierarchy2 = cv2.findContours(mask_blue, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_NONE) # 轮廓检测 #红色 cnts3, hierarchy3 = cv2.findContours(mask_yellow, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_NONE) for cnt in cnts1: (x, y, w, h) = cv2.boundingRect(cnt) # 该函数返回矩阵四个点 cv2.rectangle(frame, (x, y), (x + w, y + h), (0, 0, 255), 2) # 将检测到的颜色框起来 cv2.putText(frame, 'red', (x, y - 5), font, 0.7, (0, 0, 255), 2) for cnt in cnts2: (x, y, w, h) = cv2.boundingRect(cnt) # 该函数返回矩阵四个点 cv2.rectangle(frame, (x, y), (x + w, y + h), (0, 0, 255), 2) # 将检测到的颜色框起来 cv2.putText(frame, 'blue', (x, y - 5), font, 0.7, (0, 0, 255), 2) for cnt in cnts3: (x, y, w, h) = cv2.boundingRect(cnt) # 该函数返回矩阵四个点 cv2.rectangle(frame, (x, y), (x + w, y + h), (0, 255, 0), 2) # 将检测到的颜色框起来 cv2.putText(frame, 'yellow', (x, y - 5), font, 0.7, (0, 255, 0), 2) cv2.imshow('frame', frame) cv2.waitKey(0) cv2.destroyAllWindows()

3.效果

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持gaodaima搞代码网

以上就是python利用opencv实现颜色检测的详细内容,更多请关注gaodaima搞代码网其它相关文章!


搞代码网(gaodaima.com)提供的所有资源部分来自互联网,如果有侵犯您的版权或其他权益,请说明详细缘由并提供版权或权益证明然后发送到邮箱[email protected],我们会在看到邮件的第一时间内为您处理,或直接联系QQ:872152909。本网站采用BY-NC-SA协议进行授权
转载请注明原文链接:python利用opencv实现颜色检测

喜欢 (0)
[搞代码]
分享 (0)
发表我的评论
取消评论

表情 贴图 加粗 删除线 居中 斜体 签到

Hi,您需要填写昵称和邮箱!

  • 昵称 (必填)
  • 邮箱 (必填)
  • 网址