• 欢迎访问搞代码网站,推荐使用最新版火狐浏览器和Chrome浏览器访问本网站!
  • 如果您觉得本站非常有看点,那么赶紧使用Ctrl+D 收藏搞代码吧

对numpy中轴与维度的理解

python 搞代码 4年前 (2022-01-07) 26次浏览 已收录 0个评论

下面小编就为大家分享一篇对numpy中轴与维度的理解,具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧

NumPy’s main object is the homogeneous multidimensional array. It is a table of elements (usually numbers), all of the same type, indexed by a tuple of positive integers. In NumPy dimensions are called axes. The number of axes is rank.

For example, the coordinates of a point in 3D space [1, 2, 1] is an array of rank 1, because it has one axis. That axis has a length of 3. In the example pictured below, the array has rank 2 (it is 2-dimensional). The first dimension (axis) has a length of 2, the second dimension has a length of 3.

 [[ 1., 0., 0.], [ 0., 1., 2.]]

ndarray.ndim

数组轴的个数,在python的世界中,轴的个数被称作秩

 >> X = np.reshape(np.arange(24), (2, 3, 4)) # 也即 2 行 3 列的 4 个平面(plane) >> X array([[[ 0, 1, 2, 3], [ 4, 5, 6, 7], [ 8, 9, 10, 11]], [[12, 13, 14, 15], [16, 17, 18, 19], [20, 21, 22, 23]]]) 

shape函数是numpy.core.fromnumeric中的函数,它的功能是读取矩阵的长度,比如shape[0]就是读取矩阵第一维度的长度。

shape(x)

(2,3,4)

shape(x)[0]

2

或者

x.shape[0]

2

再来分别看每一个平面的构成:

 >> X[:, :, 0] array([[ 0, 4, 8], [12, 16, 20]]) >> X[:, :, 1] array([[ 1, 5, 9], [13, 17, 21]]) >> X[:, :, 2] array([[ 2, 6, 10], [14, 18, 22]]) >> X[:, :, 3] array([[ 3, 7, 11], [15, 19, 23]])

也即在对 np.arange(24)(0, 1, 2, 3, …, 23) 进行重新的排列时,在多维数组的多个轴的方向上,先分配最后一个轴(对于二维数组,即先分配行的方向,对于三维数组即先分配平面的方向)

reshpae,是数组对象中的方法,用于改变数组的形状。

二维数组

 #!/usr/bin/env python # coding=utf-8 import numpy as np a=np.array([1, 2, 3, 4, 5, 6, 7, 8]) print a d=a.reshape((2,4)) print d 

三维数组

 #!/usr/bin/env python # coding=utf-8 import numpy as np a=np.array([1, 2, 3, 4, 5, 6, 7, 8]) print a f=a.reshape((2, 2, 2)) print f 

形状变化的原则是数组元素不能发生改变,比如这样写就是错误的,因为数组元素发生了变化。

 #!/usr/bin/env python # coding=utf-8 import numpy as np a=np.array([1, 2, 3, 4, 5, 6, 7, 8]) print a print a.dtype e=a.reshape((2,2)) print e 

注意:通过reshape生成的新数组和原始数组公用一个内存,也就是说,假如更改一个数组的元素,另一个数组也将发生改变。

 #!/usr/bin/env python # coding=utf-8 import numpy as np a=np.array([1, 2, 3, 4, 5, 6, 7, 8]) print a e=a.reshape((2, 4)) print e a[1]=100 print a print e 

Python中reshape函数参数-1的意思

 a=np.arange(0, 60, 10) >>>a array([0,10,20,30,40,50]) >>>a.reshape(-1,1) array([[0], [10], [20], [30], [40], [50]]) 

如果写成a.reshape(1,1)就会报错

ValueError:cannot reshape array of size 6 into shape (1,来源gao($daima.com搞@代@#码(网1)

 >>> a = np.array([[1,2,3], [4,5,6]]) >>> np.reshape(a, (3,-1)) # the unspecified value is inferred to be 2 array([[1, 2], [3, 4], [5, 6]])

-1表示我懒得计算该填什么数字,由python通过a和其他的值3推测出来。

 # 下面是两张2*3大小的照片(不知道有几张照片用-1代替),如何把所有二维照片给摊平成一维 >>> image = np.array([[[1,2,3], [4,5,6]], [[1,1,1], [1,1,1]]]) >>> image.shape (2, 2, 3) >>> image.reshape((-1, 6)) array([[1, 2, 3, 4, 5, 6], [1, 1, 1, 1, 1, 1]])

以上这篇对numpy中轴与维度的理解就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持gaodaima搞代码网

以上就是对numpy中轴与维度的理解的详细内容,更多请关注gaodaima搞代码网其它相关文章!


搞代码网(gaodaima.com)提供的所有资源部分来自互联网,如果有侵犯您的版权或其他权益,请说明详细缘由并提供版权或权益证明然后发送到邮箱[email protected],我们会在看到邮件的第一时间内为您处理,或直接联系QQ:872152909。本网站采用BY-NC-SA协议进行授权
转载请注明原文链接:对numpy中轴与维度的理解

喜欢 (0)
[搞代码]
分享 (0)
发表我的评论
取消评论

表情 贴图 加粗 删除线 居中 斜体 签到

Hi,您需要填写昵称和邮箱!

  • 昵称 (必填)
  • 邮箱 (必填)
  • 网址