• 欢迎访问搞代码网站,推荐使用最新版火狐浏览器和Chrome浏览器访问本网站!
  • 如果您觉得本站非常有看点,那么赶紧使用Ctrl+D 收藏搞代码吧

Python利用PyVista进行mesh的色彩映射的实现

python 搞代码 4年前 (2022-01-07) 24次浏览 已收录 0个评论
文章目录[隐藏]

这篇文章主要介绍了Python利用PyVista进行mesh的色彩映射的实现,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧

最近项目中需要对mesh做一个色彩映射,无意间发现vtk的封装库pyvista相当好用,就试了试,在此做一个总结。

PyVista简介

PyVista是什么

PyVista 是一个:

  • VTK for humans”, 可视化工具包(VTK)的高级API
  • 空间数据的网格数据结构与滤波方法
  • 使3D绘图更加简单,可用于大型/复杂数据的图像化

PyVista(以前的vtki)是可视化工具包(VTK)的一个助手模块,它采用了一种不同的方法,通过NumPy和直接数组访问与VTK进行接口。这个包提供了一个python化的、文档化良好的接口,展示了VTK强大的可视化后端,以方便对空间引用的数据集进行快速原型化、分析和可视化集成。

该模块可用于演示文稿和研究论文的科学绘图,以及其他依赖网格的Python模块的支持模块。

参考:https://docs.pyvista.org/index.html

github

官方教程

pyvista和其他3D可视化工具比较

参考:https://github.com/pyvista/pyvista/issues/146

pyvista使用

安装

 pip install pyvista -i https://pypi.tuna.tsinghua.edu.cn/simple 

I/O读取及可视化

mesh类型

pyvista支持读取大多数常见的mesh文件类型,比如PLY,VTK,STL ,OBJ ,BYU 等,一些不常见的mesh文件类型,比如FEniCS/Dolfin_ XML format

(很遗憾,pyvista不支持点云PCD格式,不过可以通过pcdpy、pclpy、python-pcl等库来读取pcd文件)

 import pyvista as pv # 读取 mesh = pv.read('pointCloudData/data.vtk') # 显示 mesh.plot() # 其他类似 mesh = pv.read('pointCloudData/data.ply') …… 

图片类型

支持读取图片类型数据JPEG, TIFF, PNG等

 # 读取 image = pv.read('my_image.jpg-600') # 显示 image.plot(rgb=True, cpos="xy") # 其余图片类型类似 …… 

mesh彩色映射

项目中需要用到根据高度来对mesh进行彩色映射,在pyvista中大概有四种方法

自定义

代码

 import pyvista as pv import matplotlib.pyplot as plt from matplotlib.colors import ListedColormap import numpy as np def mesh_cmp_custom(mesh, name): """ 自定义色彩映射 :param mesh: 输入mesh :param name: 比较数据的名字 :return: """ pts = mesh.points mesh[name] = pts[:, 1] # Define the colors we want to use blue = np.array([12 / 256, 238 / 256, 246 / 256, 1]) black = np.array([11 / 256, 11 / 256, 11 / 256, 1]) grey = np.array([189 / 256, 189 / 256, 189 / 256, 1]) yellow = np.array([255 / 256, 247 / 256, 0 / 256, 1]) red = np.array([1, 0, 0, 1]) c_min = mesh[name].min() c_max = mesh[name].max() c_scale = c_max - c_min mapping = np.linspace(c_min, c_max, 256) newcolors = np.empty((256, 4)) newcolors[mapping >= (c_scale * 0.8 + c_min)] = red newcolors[mapping <(c_scale * 0.8 + c_min)] = grey newcolors[mapping <(c_scale * 0.55 + c_min)] = yellow newcolors[mapping <(c_scale * 0.3 + c_min)] = blue newcolors[mapping <(c_scale * 0.1 + c_min)] = black # Make the colormap from the listed colors my_colormap = ListedColormap(newcolors) mesh.plot(scalars=name, cmap=my_colormap) if __name__ == '__main__': mesh = pv.read('pointCloudData/1.ply') mesh_cmp_custom(mesh, 'y_height')

使用pyvista自带的cmp

函数mesh.plot(scalars=name, cmap='viridis_r')

其中cmap支持的样式:

‘Accent’, ‘Accent_r’, ‘Blues’, ‘Blues_r’, ‘BrBG’, ‘BrBG_r’, ‘BuGn’, ‘BuGn_r’, ‘BuPu’, ‘BuPu_r’, ‘CMRmap’, ‘CMRmap_r’, ‘Dark2′, ‘Dark2_r’, ‘GnBu’, ‘GnBu_r’, ‘Greens’, ‘Greens_r’, ‘Greys’, ‘Greys_r’, ‘OrRd’, ‘OrRd_r’, ‘Oranges’, ‘Oranges_r’, ‘PRGn’, ‘PRGn_r’, ‘Paired’, ‘Paired_r’, ‘Pastel1′, ‘Pastel1_r’, ‘Pastel2′, ‘Pastel2_r’, ‘PiYG’, ‘PiYG_r’, ‘PuBu’, ‘PuBuGn’, ‘PuBuGn_r’, ‘PuBu_r’, ‘PuOr’, ‘PuOr_r’, ‘PuRd’, ‘PuRd_r’, ‘Purples’, ‘Purples_r’, ‘RdBu’, ‘RdBu_r’, ‘RdGy’, ‘RdGy_r’, ‘RdPu’, ‘RdPu_r’, ‘RdYlBu’, ‘RdYlBu_r’, ‘RdYlGn’, ‘RdYlGn_r’, ‘Reds’, ‘Reds_r’, ‘Set1′, ‘Set1_r’, ‘Set2′, ‘Set2_r’, ‘Set3′, ‘Set3_r’, ‘Spectral’, ‘Spectral_r’, ‘Wistia’, ‘Wistia_r’, ‘YlGn’, ‘YlGnBu’, ‘YlGnBu_r’, ‘YlGn_r’, ‘YlOrBr’, ‘YlOrBr_r’, ‘YlOrRd’, ‘YlOrRd_r’, ‘afmhot’, ‘afmhot_r’, ‘autumn’, ‘autumn_r’, ‘binary’, ‘binary_r’, ‘bone’, ‘bone_r’, ‘brg’, ‘brg_r’, ‘bwr’, ‘bwr_r’, ‘cividis’, ‘cividis_r’, ‘cool’, ‘cool_r’, ‘coolwarm’, ‘coolwarm_r’, ‘copper’, ‘copper_r’, ‘cubehelix’, ‘cubehelix_r’, ‘flag’, ‘flag_r’, ‘gist_earth’, ‘gist_earth_r’, ‘gist_gray’, ‘gist_gray_r’, ‘gist_heat’, ‘gist_heat_r’, ‘gist_ncar’, ‘gist_ncar_r’, ‘gist_rainbow’, ‘gist_rainbow_r’, ‘gist_stern’, ‘gist_stern_r’, ‘gist_yarg’, ‘gist_yarg_r’, ‘gnuplot’, ‘gnuplot2′, ‘gnuplot2_r’, ‘gnuplot_r’, ‘gray’, ‘gray_r’, ‘hot’, ‘hot_r’, ‘hsv’, ‘hsv_r’, ‘inferno’, ‘inferno_r’, ‘jet’, ‘jet_r’, ‘magma’, ‘magma_r’, ‘nipy_spectral’, ‘nipy_spectral_r’, ‘ocean’, ‘ocean_r’, ‘pink’, ‘pink_r’, ‘plasma’, ‘plasma_r’, ‘prism’, ‘prism_r’, ‘rainbow’, ‘rainbow_r’, ‘seismic’, ‘seismic_r’, ‘spring’, ‘spring_r’, ‘summer’, ‘summer_r’, ‘tab10′, ‘tab10_r’, ‘tab20′, ‘tab20_r’, ‘tab20b’, ‘tab20b_r’, ‘tab20c’, ‘tab20c_r’, ‘terrain’, ‘terrain_r’, ‘turbo’, ‘turbo_r’, ‘twilight’, ‘twilight_r’, ‘twilight_shifted’, ‘twilight_shifted_r’, ‘viridis’, ‘viridis_r’, ‘winter’, ‘winter_r’

代码

 import pyvista as pv def mesh_cmp(mesh, name): """ 使用进行plot自带的色彩映射 :param mesh: 输入mesh :param name: 比较数据的名字 :return: """ pts = mesh.points mesh[name] = pts[:, 1] mesh.plot(scalars=name, cmap='viridis_r') if __name__ == '__main__': mesh = pv.read('vtkData/airplane.ply') mesh_cmp(mesh, 'y_height') 

效果

使用Matplotlib的cmp

代码

 import pyvista as pv import matplotlib.pyplot as plt def mesh_cmp_mpl(mesh, name): """ 使用Matplotlib进行色彩映射 :param mesh: 输入mesh :param name: 比较数据的名字 :return: """ pts = mesh.points mesh[name] = pts[:, 1] mlp_cmap = plt.cm.get_cmap("viridis", 25) mesh.plot(scalars=name, cmap=mlp_cmap) if __name__ == '__main__': mesh = pv.read('vtkData/airplane.ply') mesh_cmp_mpl(mesh, 'y_height') 

效果

使用colorcet的cmp

需要先安装colorcet:

 pip install colorcet 

使用方法和上面几种方法类似,若想使用colorcet的colormaps中的hot:

mesh.plot(scalars=name, cmap=“hot”)

代码

 def mesh_cmp_colorcet(mesh, name): """ 使用进行colorcet进行色彩映射 :param mesh: 输入mesh :param name: 比较数据的名字 :return: """ pts = mesh.points mesh[name] = pts[:, 1] mesh.plot(scalars=name, cmap=colorcet.fire) if __name__ == '__main__': mesh = pv.read('vtkData/airplane.ply') mesh_cmp_colorcet(mesh, 'y_height') 

总结

pyvista相当强大,而且比直接用vtk更加方便(代码量肉眼可见的降低!)

到此这篇关于Python利用PyVista进行mesh的色彩映射的实现的文章就介绍到这了,更多相关PyVista mesh色彩映射内容请搜索gaodaima搞代码网来源gao*daima.com搞@代#码网以前的文章或继续浏览下面的相关文章希望大家以后多多支持gaodaima搞代码网

以上就是Python利用PyVista进行mesh的色彩映射的实现的详细内容,更多请关注gaodaima搞代码网其它相关文章!


搞代码网(gaodaima.com)提供的所有资源部分来自互联网,如果有侵犯您的版权或其他权益,请说明详细缘由并提供版权或权益证明然后发送到邮箱[email protected],我们会在看到邮件的第一时间内为您处理,或直接联系QQ:872152909。本网站采用BY-NC-SA协议进行授权
转载请注明原文链接:Python利用PyVista进行mesh的色彩映射的实现

喜欢 (0)
[搞代码]
分享 (0)
发表我的评论
取消评论

表情 贴图 加粗 删除线 居中 斜体 签到

Hi,您需要填写昵称和邮箱!

  • 昵称 (必填)
  • 邮箱 (必填)
  • 网址