• 欢迎访问搞代码网站,推荐使用最新版火狐浏览器和Chrome浏览器访问本网站!
  • 如果您觉得本站非常有看点,那么赶紧使用Ctrl+D 收藏搞代码吧

python 计算积分图和haar特征的实例代码

python 搞代码 4年前 (2022-01-07) 25次浏览 已收录 0个评论

今天小编就为大家分享一篇python 计算积分图和haar特征的实例代码,具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧

下面的代码通过积分图计算一张图片的一种haar特征的所有可能的值。初步学习图像处理并尝试写代码,如有错误,欢迎指出。

 import cv2 import numpy as np import matplotlib.pyplot as plt # #计算积分图 # def integral(img): integ_graph = np.zeros((img.shape[0],img.shape[1]),dtype = np.int32) for x in range(img.shape[0]): sum_clo = 0 for y in range(img.shape[1]): sum_clo = sum_clo + img[x][y] integ_graph[x][y] = integ_graph[x-1][y] + sum_clo; return integ_graph # Types of Haar-like rectangle features #  --- --- # |  |  | # | - | + | # |  |  | # --- --- # #就算所有需要计算haar特征的区域 # def getHaarFeaturesArea(width,height): widthLimit = width-1 heightLimit = height/2-1 features = [] for w in range(1,int(widthLimit)): for h in range(1,int(heightLimit)): wMoveLimit = width - w hMoveLimit = height - 2*h for x in range(0, wMoveLimit): for y in range(0, hMoveLimit): features.append([x, y, w, h]) return features # #通过积分图特征区域计算haar特征 # def calHaarFeatures(integral_graph,features_graph): haarFeatures = [] for num in range(len(features_graph)): #计算左面的矩形区局的像素和 haar1 = integral_graph[features_graph[num][0]][features_graph[num][1]]-\ integral_graph[features_graph[num][0]<b style="color:transparent">来源gao@dai!ma.com搞$代^码网</b>+features_graph[num][2]][features_graph[num][1]] -\ integral_graph[features_graph[num][0]][features_graph[num][1]+features_graph[num][3]] +\ integral_graph[features_graph[num][0]+features_graph[num][2]][features_graph[num][1]+features_graph[num][3]] #计算右面的矩形区域的像素和 haar2 = integral_graph[features_graph[num][0]][features_graph[num][1]+features_graph[num][3]]-\ integral_graph[features_graph[num][0]+features_graph[num][2]][features_graph[num][1]+features_graph[num][3]] -\ integral_graph[features_graph[num][0]][features_graph[num][1]+2*features_graph[num][3]] +\ integral_graph[features_graph[num][0]+features_graph[num][2]][features_graph[num][1]+2*features_graph[num][3]] #右面的像素和减去左面的像素和 haarFeatures.append(haar2-haar1) return haarFeatures img = cv2.imread("faces/face00001.bmp",0) integeralGraph = integral(img) featureAreas = getHaarFeaturesArea(img.shape[0],img.shape[1]) haarFeatures = calHaarFeatures(integeralGraph,featureAreas) print(haarFeatures) 

以上这篇python 计算积分图和haar特征的实例代码就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持gaodaima搞代码网

以上就是python 计算积分图和haar特征的实例代码的详细内容,更多请关注gaodaima搞代码网其它相关文章!


搞代码网(gaodaima.com)提供的所有资源部分来自互联网,如果有侵犯您的版权或其他权益,请说明详细缘由并提供版权或权益证明然后发送到邮箱[email protected],我们会在看到邮件的第一时间内为您处理,或直接联系QQ:872152909。本网站采用BY-NC-SA协议进行授权
转载请注明原文链接:python 计算积分图和haar特征的实例代码
喜欢 (0)
[搞代码]
分享 (0)
发表我的评论
取消评论

表情 贴图 加粗 删除线 居中 斜体 签到

Hi,您需要填写昵称和邮箱!

  • 昵称 (必填)
  • 邮箱 (必填)
  • 网址