• 欢迎访问搞代码网站,推荐使用最新版火狐浏览器和Chrome浏览器访问本网站!
  • 如果您觉得本站非常有看点,那么赶紧使用Ctrl+D 收藏搞代码吧

细数nn.BCELoss与nn.CrossEntropyLoss的区别

python 搞代码 4年前 (2022-01-06) 90次浏览 已收录 0个评论

今天小编就为大家整理了一篇细数nn.BCELoss与nn.CrossEntropyLoss的区别,具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧

以前我浏览博客的时候记得别人说过,BCELoss与CrossEntropyLoss都是用于分类问题。可以知道,BCELoss是Binary CrossEntropyLoss的缩写,BCELoss CrossEntropyLoss的一个特例,只用于二分类问题,而CrossEntropyLoss可以用于二分类,也可以用于多分类。

不过我重新查阅了一下资料,发现同样是处理二分类问题,BCELoss与CrossEntropyLoss是不同的。下面我详细讲一下哪里不同。

1、使用nn.BCELoss需要在该层前面加上Sigmoid函数。

公式如下:

2、使用nn.CrossEntropyLoss会自动加上Sofrmax层。

公式如下:

可以看出,这两个计算损失的函数使用的激活函数不同,故而最后的计算公式不同。

补充拓展:pytorch的BCELoss和cross entropy

BCELoss:

torch.nn.BCELoss:

 Input: (N, *)(N,∗) where *∗ means, any number of additional dimensions Target: (N, *)(N,∗), same shape as the input Output: scalar. If reduction is 'none', then (N, *)(N,∗), same shape as input. 

这里的输入和target 目标必须形状一致,并且都是浮点数,二分类中一般用sigmoid的把输出挑出一个数:

 >>> m = nn.Sigmoid() >>> loss = nn.BCELoss() >>> input = torch.randn(3, requires_grad=True) >>> target = torch.empty(3).random_(2) >>> output = loss(m(input), target) >>> output.backward()

CrossEntropyLoss:

 input(N,C) #n 是batch c是类别 target(N)

输入和target 形状是不同的crossEntropy 是自己会做softmax

 >>> loss = nn.CrossEntropyLoss() >>> input = torch.randn(3, 5, requires_grad=True) >>> target = torch.empty(3, dtype=torch.lo<b style="color:transparent">来源gao@!dai!ma.com搞$$代^@码!网</b>ng).random_(5) >>> output = loss(input, target) >>> output.backward()

以上这篇细数nn.BCELoss与nn.CrossEntropyLoss的区别就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持gaodaima搞代码网

以上就是细数nn.BCELoss与nn.CrossEntropyLoss的区别的详细内容,更多请关注gaodaima搞代码网其它相关文章!


搞代码网(gaodaima.com)提供的所有资源部分来自互联网,如果有侵犯您的版权或其他权益,请说明详细缘由并提供版权或权益证明然后发送到邮箱[email protected],我们会在看到邮件的第一时间内为您处理,或直接联系QQ:872152909。本网站采用BY-NC-SA协议进行授权
转载请注明原文链接:细数nn.BCELoss与nn.CrossEntropyLoss的区别

喜欢 (0)
[搞代码]
分享 (0)
发表我的评论
取消评论

表情 贴图 加粗 删除线 居中 斜体 签到

Hi,您需要填写昵称和邮箱!

  • 昵称 (必填)
  • 邮箱 (必填)
  • 网址