这篇文章主要介绍了.NET做人脸识别并分类示例,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧
来源gao!%daima.com搞$代*!码网
在游乐场、玻璃天桥、滑雪场等娱乐场所,经常能看到有摄影师在拍照片,令这些经营者发愁的一件事就是照片太多了,客户在成千上万张照片中找到自己可不是件容易的事。在一次游玩等活动或家庭聚会也同理,太多了照片导致挑选十分困难。
还好有.NET
,只需少量代码,即可轻松找到人脸并完成分类。
本文将使用Microsoft Azure
云提供的认知服务
(Cognitive Services
)API
来识别并进行人脸分类,可以免费使用,注册地址是:https://portal.azure.com。注册完成后,会得到两个密钥
,通过这个密钥
即可完成本文中的所有代码,这个密钥
长这个样子(非真实密钥):
fa3a7bfd807ccd6b17cf559ad584cbaa
使用方法
首先安装NuGet
包Microsoft.Azure.CognitiveServices.Vision.Face
,目前最新版是2.5.0-preview.1
,然后创建一个FaceClient
:
string key = "fa3a7bfd807ccd6b17cf559ad584cbaa"; // 替换为你的key using var fc = new FaceClient(new ApiKeyServiceClientCredentials(key)) { Endpoint = "https://southeastasia.api.cognitive.microsoft.com", };
然后识别一张照片:
using var file = File.OpenRead(@"C:\Photos\DSC_996ICU.JPG"); IList faces = await fc.Face.DetectWithStreamAsync(file);
其中返回的faces
是一个IList
结构,很显然一次可以识别出多个人脸,其中一个示例返回结果如下(已转换为JSON
):
[ { "FaceId": "9997b64e-6e62-4424-88b5-f4780d3767c6", "RecognitionModel": null, "FaceRectangle": { "Width": 174, "Height": 174, "Left": 62, "Top": 559 }, "FaceLandmarks": null, "FaceAttributes": null }, { "FaceId": "8793b251-8cc8-45c5-ab68-e7c9064c4cfd", "RecognitionModel": null, "FaceRectangle": { "Width": 152, "Height": 152, "Left": 775, "Top": 580 }, "FaceLandmarks": null, "FaceAttributes": null } ]
可见,该照片返回了两个DetectedFace
对象,它用FaceId
保存了其Id
,用于后续的识别,用FaceRectangle
保存了其人脸的位置信息,可供对其做进一步操作。RecognitionModel
、FaceLandmarks
、FaceAttributes
是一些额外属性,包括识别性别
、年龄
、表情
等信息,默认不识别,如下图API
所示,可以通过各种参数配置,非常好玩,有兴趣的可以试试:
最后,通过.GroupAsync
来将之前识别出的多个faceId
进行分类:
var faceIds = faces.Select(x => x.FaceId.Value).ToList(); GroupResult reslut = await fc.Face.GroupAsync(faceIds);
返回了一个GroupResult
,其对象定义如下:
public class GroupResult { public IList<IList> Groups { get; set; } public IList MessyGroup { get; set; } // ... }
包含了一个Groups
对象和一个MessyGroup
对象,其中Groups
是一个数据的数据,用于存放人脸的分组,MessyGroup
用于保存未能找到分组的FaceId
。
有了这个,就可以通过一小段简短的代码,将不同的人脸组,分别复制对应的文件夹中:
void CopyGroup(string outputPath, GroupResult result, Dictionary faces) { foreach (var item in result.Groups .SelectMany((group, index) => group.Select(v => (faceId: v, index))) .Select(x => (info: faces[x.faceId], i: x.index + 1)).Dump()) { string dir = Path.Combine(outputPath, item.i.ToString()); Directory.CreateDirectory(dir); File.Copy(item.info.file, Path.Combine(dir, Path.GetFileName(item.info.file)), overwrite: true); } string messyFolder = Path.Combine(outputPath, "messy"); Directory.CreateDirectory(messyFolder); foreach (var file in result.MessyGroup.Select(x => faces[x].file).Distinct()) { File.Copy(file, Path.Combine(messyFolder, Path.GetFileName(file)), overwrite: true); } }
然后就能得到运行结果,如图,我传入了102
张照片,输出了15
个分组和一个“未找到队友”的分组:
还能有什么问题?
就两个API
调用而已,代码一把梭,感觉太简单了?其实不然,还会有很多问题。
图片太大,需要压缩
毕竟要把图片上传到云服务中,如果上传网速不佳,流量会挺大,而且现在的手机、单反、微单都能轻松达到好几千万像素,jpg
大小轻松上10MB
,如果不压缩就上传,一来流量和速度遭不住。
二来……其实Azure
也不支持,文档(https://docs.microsoft.com/en-us/rest/api/cognitiveservices/face/face/detectwithstream)显示,最大仅支持6MB
的图片,且图片大小应不大于1920x1080
的分辨率:
- JPEG, PNG, GIF (the first frame), and BMP format are supported. The allowed image file size is from 1KB to 6MB.
- The minimum detectable face size is 36×36 pixels in an image no larger than 1920×1080 pixels. Images with dimensions higher than 1920×1080 pixels will need a proportionally larger minimum face size.
因此,如果图片太大,必须进行一定的压缩(当然如果图片太小,显然也没必要进行压缩了),使用.NET
的Bitmap
,并结合C# 8.0
的switch expression
,这个判断逻辑以及压缩代码可以一气呵成:
byte[] CompressImage(string image, int edgeLimit = 1920) { using var bmp = Bitmap.FromFile(image); using var resized = (1.0 * Math.Max(bmp.Width, bmp.Height) / edgeLimit) switch { var x when x > 1 => new Bitmap(bmp, new Size((int)(bmp.Size.Width / x), (int)(bmp.Size.Height / x))), _ => bmp, }; using var ms = new MemoryStream(); resized.Save(ms, ImageFormat.Jpeg); return ms.ToArray(); }
竖立的照片
相机一般都是3:2
的传感器,拍出来的照片一般都是横向的。但偶尔寻求一些构图的时候,我们也会选择纵向构图。虽然现在许多API
都支持正负30
度的侧脸,但竖着的脸API
基本都是不支持的,如下图(实在找不到可以授权使用照片的模特了
以上就是.NET做人脸识别并分类的实现示例的详细内容,更多请关注gaodaima搞代码网其它相关文章!