• 欢迎访问搞代码网站,推荐使用最新版火狐浏览器和Chrome浏览器访问本网站!
  • 如果您觉得本站非常有看点,那么赶紧使用Ctrl+D 收藏搞代码吧

如何用PHP实现分布算法之一致性哈希算法

php 搞代码 4年前 (2022-01-01) 16次浏览 已收录 0个评论
文章目录[隐藏]

进行大型网站的web开发时,分布式这个词经常出现在我们面前。如: memcache、redis服务器等缓存服务器的负载均衡(分布式cache)、 MySQL的分布式集群,这些都会用到分布式的思想,都要理解分布式算法。接下来以缓存服务器的负载均衡来谈一下一致性哈希算法。

传统算法缺陷

对于服务器分布,我们要考虑的东西有如下三点:数据平均分布,查找定位准确,降低宕机影响。

传统算法一般是将数据的键用算法映射出数字,对其用服务器数量取模,并根据结果选择要存储的服务器。其能达到数据平均分布和查找定位准确的要求,并且优点是算法简单,存取时的计算量都比较小(在数据非常大时才会明显)。

但其有一个致命缺点,即一个服务器宕机后的影响很大,我们可以推算一下一台服务器宕机后的影响:

  • 原有数据大部分丢失:服务器数量减少一台,取模数减1导致取模值错乱,如果以前有N台服务器,那么宕机后数据只有1/(n*(n-1))的数据能够被准确查找到。
  • 负载无法均衡导致集体宕机:如果没有及时处理宕机的服务器,那么他的存储任务将会被顺序积累给它的下一个服务器,那么下一个服务器也会很快被压致宕机,如此一来,服务器组很快会集体宕机。

算法思想

一致性哈希算法是使用一定的哈希算法,将大量的数据平均映射到不同的存储目标上,在保证其查找准确性的同时,还要考虑其中一个存储目标失效时,其他存储目标对其责任存储内容的负载均衡。

一致性哈希算法的实现思想不难理解,如图:

1.用一定的哈希算法(哈希函数等)将一组服务器的多个(数目自己设定)节点随机映射分散到0-232之间,由于其随机分布,保证了其数据平均分布的特点;

2.用同一算法计算要存储数据的键,根据服务器节点确定其存储的服务器结点,由于每次用同一算法计算,所以得出的结果是相同的,使其查找定位准确;

3.查找数据时,再次用同一算法计算键,并查找服务器的数据结点;

4.如果有一个服务器宕机,消除其服务器结点,并将数据放在下一个结点上,由于随机节点位置的随机性,所以数据被其他服务器平均负载,也就降低了宕机影响。

需要注意的是,这个环形空间只是一个虚拟空间,只是表示了服务器存储的范围和数据的落点,在进行存储时,我们还要通过查找到的落点,将数据放入对应的服务器进行查改。

算法实现

编程语言我们使用PHP来实现一致性哈希算法:

我们主要用到以下函数:

int crc32 ( string $str )
生成 str 的 32 位循环冗余校验码多项式。这通常用于检查传输的数据是否完整。

string sprintf ( string $format [, mixed $args [, mixed $… ]] )
通过传入的格式产生字符串的特定格式形态。

实现如下:

 class Consistance { protected $num=24;          //设定每一个服务器的节点数,数量越多,宕机时服务器负载就会分布得越平均,但也增大数据查找消耗。 protected $nodes=array();   //当前服务器组的结点列表。 //计算一个数据的哈希值,用以确定位置 public function make_hash($data) { return sprintf('%u',crc32($data)); } //遍历当前服务器组的节点列表,确定需要存储/查找的服务器 public function set_loc($data) { $loc=self::make_hash($data); foreach ($this->nodes as $key => $val) { if($loc<=$key) { return $val; } } } //添加一个服务器,将其结点添加到服务器组的节点列表内。 public function add_host($host) { for($i=0;$inum;$i++) { $key=sprintf('%u',crc32($host.'_'.$i)); $this->nodes[$key]=$host; } ksort($this->nodes);        //对结点排序,这样便于查找。 } //删除一个服务器,并将其对应节点从服务器组的节点列表内移除。 public function remove_host($host) { for($i=0;$inum;$i++) { $key=sprintf('%u',crc32($host.'_'.$i)); unset($this->nodes[$key]); } } }

我们用以下代码进行测试:

结果如下:

总结

算法的实现到此,我们还可以对算法进行优化,如在服务器数量和每个服务器节点数都很多的情况下,对查找结点的过程进行优化,因为排序好的,可以用二分法进行查找,加快查询效率来源gao($daima.com搞@代@#码网,这些,仁智各见吧。

另外,虽然nginx服务器有一致性算法的插件,memcache和redis也都有相应的插件,MySQL的中间件有相应的集成,但是了解一致性哈希算法也很有意义。而且,我们也可以对其灵活使用,如对文件等进行分布式管理等等。

以上就是如何用PHP实现分布算法之一致性哈希算法的详细内容,更多请关注gaodaima搞代码网其它相关文章!


搞代码网(gaodaima.com)提供的所有资源部分来自互联网,如果有侵犯您的版权或其他权益,请说明详细缘由并提供版权或权益证明然后发送到邮箱[email protected],我们会在看到邮件的第一时间内为您处理,或直接联系QQ:872152909。本网站采用BY-NC-SA协议进行授权
转载请注明原文链接:如何用PHP实现分布算法之一致性哈希算法

喜欢 (0)
[搞代码]
分享 (0)
发表我的评论
取消评论

表情 贴图 加粗 删除线 居中 斜体 签到

Hi,您需要填写昵称和邮箱!

  • 昵称 (必填)
  • 邮箱 (必填)
  • 网址