• 欢迎访问搞代码网站,推荐使用最新版火狐浏览器和Chrome浏览器访问本网站!
  • 如果您觉得本站非常有看点,那么赶紧使用Ctrl+D 收藏搞代码吧

使用子查询可提升 COUNT DISTINCT 速度 50 倍

数据库 搞代码 7年前 (2018-06-25) 191次浏览 已收录 0个评论

  注:这些技术是通用的,只不过我们选择使用Postgres的语法。使用独特的pgAdminIII生成解释图形。

  很有用,但太慢

  Count distinct是SQL分析时的祸根,因此它是我第一篇博客的不二选择。

  首先:如果你有一个大的且能够容忍不精确的数据集,那像HyperLogLog这样的概率计数器应该是你最好的选择。(我们会在以后的博客中谈到HyperLogLog。)但对于需要快速、精准答案的查询,一些简单的子查询可以节省你很多时间。

  让我们以我们一直使用的一个简单查询开始:哪个图表的用户访问量最大?

 select    dashboards.name,    count(distinct time_on_site_logs.user_id) from time_on_site_logs  join dashboards on time_on_site_logs.dashboard_id = dashboards.id group by name  order by count desc

  首先,我们假设user_id和dashboard_id上已经设置了索引,且有比图表和用户数多得多的日志条目。

  一千万行数据时,查询需要48秒。要知道原因让我们看一下SQL解析:

使用子查询可提升 COUNT DISTINCT 速度 50 倍

  它慢是因为数据库遍历了所有日志以及所有的图表,然后join它们,再将它们排序,这些都在真正的group和分组和聚合工作之前。

  先聚合,然后Join

  group-聚合后的任何工作代价都要低,因为数据量会更小。group-聚合时我们不需使用dashboards.name,我们也可以先在数据库上做聚集,在join之前:

 select   dashboards.name,   log_counts.ct from dashboards join (   select     dashboard_id,     count(distinct user_id) as ct   from time_on_site_logs    group by dashboard_id ) as log_counts  on log_counts.dashboard_id = dashboards.id order by log_counts.ct desc

  现在查询运行了20秒,提升了2.4倍。再次通过解析来看一下原因:

使用子查询可提升 COUNT DISTINCT 速度 50 倍

  正如设计的,group-聚合在join之前。而且,额外的我们可以利用time_on_site_logs表里的索引。

  首先,缩小数据集

  我们可以做的更好。通过在整个日志表上group-聚合,我们处理了数据库中很多不必要的数据。Count distinct为每个group生成一个哈希——在本次环境中为每个dashboard_id——来跟踪哪些bucket中的哪些值已经检查过。

  我们可以预先计算差异,而不是处理全部数据,这样只需要一个哈希集合。然后我们在此基础上做一个简单的聚集即可。

 select   dashboards.name,   log_counts.ct from dashboards  join (   select distinct_logs.dashboard_id,    count(1) as ct   from (     select distinct dashboard_id, user_id     from time_on_site_logs   ) as distinct_logs   group by distinct_logs.dashboard_id ) as log_counts  on log_counts.dashboard_id = dashboards.id order by log_counts.ct desc

  我们采取内部的count-distinct-group,然后将数据拆成两部分分成两块。第一块计算distinct (dashboard_id, user_id) 。第二块在它们基础上运行一个简单group-count。跟上面一样,最后再join。

使用子查询可提升 COUNT DISTINCT 速度 50 倍

  呵呵,大发现:这样只需要0.7秒!这比上面的查询快28倍,比原来的快了68倍

  通常,数据大小和类型很重要。上面的例子受益于基数中没多少换算。distinct (user_id, dashboard_id)相对于数据总量来说数量也很少。不同的对数越多,用来group和计数的唯一数据就越多——代价便会越来越大。

  下一遇到长时间运行的count distinct时,尝试一些子查询来减负吧。

  原文地址:https://periscope.io/blog/use-subqueries-to-count-distinct-50x-faster.html

欢迎大家阅读《使用子查询可提升 COUNT DISTINCT 速度 50 倍》,跪求各位点评,若觉得好的话请收藏本文,by 搞代码


搞代码网(gaodaima.com)提供的所有资源部分来自互联网,如果有侵犯您的版权或其他权益,请说明详细缘由并提供版权或权益证明然后发送到邮箱[email protected],我们会在看到邮件的第一时间内为您处理,或直接联系QQ:872152909。本网站采用BY-NC-SA协议进行授权
转载请注明原文链接:使用子查询可提升 COUNT DISTINCT 速度 50 倍

喜欢 (0)
[搞代码]
分享 (0)
发表我的评论
取消评论

表情 贴图 加粗 删除线 居中 斜体 签到

Hi,您需要填写昵称和邮箱!

  • 昵称 (必填)
  • 邮箱 (必填)
  • 网址