本文的文字及图片来源于网络,仅供学习、交流使用,不具有任何商业用途,版权归原作者所有,如有问题请及时联系我们以作处理。
以下文章来源于DataCharm,作者 宁海涛
转载地址
<code><span class="hljs-attribute">https:<span class="hljs-comment">//www.zhihu.<a href="https://www.gaodaima.com/tag/com" title="查看更多关于com的文章" target="_blank">com</a>/people/qi-shi-huan-hao-la-14/posts</span></span></code>
www#gaodaima.com来源gao@!dai!ma.com搞$$代^@码网搞代码
Python-joypy 制作
Python 制作峰峦图有直接的第三方库joypy进行绘制,该库可以直接通过pip安装。可视化代码如下:
<span>import</span><span> matplotlib.pyplot as plt plt.rcParams[</span><span>"</span><span>font.family</span><span>"</span>] = [<span>"</span><span>Times New Roman</span><span>"</span><span>] colors </span>= [<span>"</span><span>#791E94</span><span>"</span>,<span>"</span><span>#58C9B9</span><span>"</span>,<span>"</span><span>#519D9E</span><span>"</span>,<span>"</span><span>#D1B6E1</span><span>"</span><span>] fig,axs </span>= joypy.joyplot(data_ed, by=<span>"</span><span>source</span><span>"</span>,fill=True, legend=True,alpha=.8<span>, range_style</span>=<span>"</span><span>own</span><span>"</span>,xlabelsize=22,ylabelsize=22<span>, grid</span>=<span>"</span><span>both</span><span>"</span>, linewidth=.8,linecolor=<span>"</span><span>k</span><span>"</span>, figsize=(12,6),color=<span>colors, )ax </span>= plt.gca()<span>#</span><span>设置x刻度为时间形式x = np.arange(6)</span> xlabel=[<span>"</span><span>8-21</span><span>"</span>,<span>"</span><span>8-28</span><span>"</span>,<span>"</span><span>9-4</span><span>"</span>,<span>"</span><span>9-11</span><span>"</span>,<span>"</span><span>9-18</span><span>"</span>,<span>"</span><span>9-25</span><span>"</span><span>] ax.set_xlim(left</span>=-.5,right=5.5<span>) ax.set_xticks(x)ax.set_xticklabels(xlabel)ax.text(.</span>47,1.1,<span>"</span><span>Joyplot plots of media shares (TV, Online News and Google Trends)</span><span>"</span><span>, transform </span>= ax.transAxes,ha=<span>"</span><span>center</span><span>"</span>, va=<span>"</span><span>center</span><span>"</span>,fontsize = 25,color=<span>"</span><span>black</span><span>"</span><span>) ax.text(.</span>5,1.03,<span>"</span><span>Python Joyplot Test</span><span>"</span><span>, transform </span>= ax.transAxes,ha=<span>"</span><span>center</span><span>"</span>, va=<span>"</span><span>center</span><span>"</span>,fontsize = 15,color=<span>"</span><span>black</span><span>"</span><span>) ax.text(.</span>90,-.11,<span>"</span><span> Visualization by DataCharm</span><span>"</span>,transform =<span> ax.transAxes, ha</span>=<span>"</span><span>center</span><span>"</span>, va=<span>"</span><span>center</span><span>"</span>,fontsize = 12,color=<span>"</span><span>black</span><span>"</span><span>) plt.savefig(r</span><span>"</span><span>F:DataCharmArtist_charts_make_<a href="https://www.gaodaima.com/tag/python" title="查看更多关于python的文章" target="_blank">python</a>_RjoyplotsJoyplot_python.png</span><span>"</span><span>, width</span>=7,height=5,dpi=900,bbox_inches=<span>"</span><span>tight</span><span>"</span>)
可视化结果如下:
关于 joypy库其他详细的参数设置,可以去官网(https://github.com/sbebo/joypy) 下载 Joyplot.ipynb 文件查看,最好查看所绘制数据的格式,有助于更好绘制峰峦图。
R-ggridges 绘制
借助于R语言丰富且强大的第三方绘图包,在应对不同类型图表时,机会都会有对应的包进行绘制。本次就使用ggridges包(https://wilkelab.org/ggridges/)进行峰峦图的绘制。官网的例子如下:
ggplot(lincoln_weather, aes(x = `Mean Temperature [F]`, y = Month, fill = stat(x))) +<span> geom_density_ridges_gradient(scale </span>= 3, rel_min_height = 0.01, gradient_lwd = 1.) +<span> scale_x_continuous(expand </span>= c(0, 0)) +<span> scale_y_discrete(expand </span>= expand_scale(mult = c(0.01, 0.25))) +<span> scale_fill_viridis_c(name </span>= <span>"</span><span>Temp. [F]</span><span>"</span>, option = <span>"</span><span>C</span><span>"</span>) +<span> labs( title </span>= <span>"</span><span>Temperatures in Lincoln NE</span><span>"</span><span>, subtitle </span>= <span>"</span><span>Mean temperatures (Fahrenheit) by month for 2016</span><span>"</span><span> ) </span>+ theme_ridges(font_size = 13, grid = TRUE) +<span> theme(axis.title.y </span>= element_blank())
结果如下:
这里我们没有使用 geom_density_ridges_gradient()进行绘制,使用了 geom_ridgeline() 进行类似于 山脊线 图的绘制。
绘制代码如下:
<span>library(ggthemes) library(hrbrthemes)plot </span><- ggplot(all_data, aes(x = date, y = source)) +<span> geom_ridgeline(aes(height </span>= value, fill = factor(hurricane)), size = 0.1, scale = 0.8, alpha = 0.8) +<span> labs(title </span>= <span>"</span><span>Ridgeline plots of media shares (TV, Online News and Google Trends)</span><span>"</span><span>, subtitle </span>= <span>"</span><span>ggridges ridgeline plot test</span><span>"</span><span>, caption </span>= <span>"</span><span>Visualization by DataCharm</span><span>"</span><span>, y </span>=<span> NULL, x </span>= NULL) +<span> scale_x_date(expand </span>= c(0,0)) +<span> scale_fill_manual(values </span>= c(<span>"</span><span>#791E94</span><span>"</span>,<span>"</span><span>#58C9B9</span><span>"</span>,<span>"</span><span>#D1B6E1</span><span>"</span>,<span>"</span><span>#519D9E</span><span>"</span>),name=<span>"</span><span>Hurricane</span><span>"</span>)+<span> theme_ipsum()</span>+<span> theme(text </span>= element_text(family = <span>"</span><span>Poppins</span><span>"</span>,face = <span>"</span><span>bold</span><span>"</span><span>), axis.text.y </span>= element_text(vjust = -2<span>)) plot</span>
可视化结果如下:
上述所涉及到的函数都是基本,在熟悉ggpot2 绘图体系后可以轻松理解。更多有趣的可视化作品,大家可以去官网查看。