BlockCanary源码解析
在解说BlockCanary源码之前,咱们还是须要将一些前置的知识点。本文不讲Handler的原理了,不太懂的同学本人去百度看一下吧。
什么是卡顿
在解说卡顿问题之前,咱们须要讲一下帧率这个概念。帧率是以帧称为单位的位图图像间断呈现在显示器上的频率。我将一个例子,电影播放。电影其实就是很多张照片(帧)的一个汇合,那为什么看起来是一个间断的过程呢?因为电影每一秒呈现过的图片不止一张。实际上电影个别一秒呈现的图片张数会在20-30张。假如电影一秒呈现了24张图片,那么这个电影的帧率就是24。帧率就是一秒中,呈现了多少帧。
晓得了什么是帧率,那么问题来了,为什么会呈现卡顿呢?卡顿在咱们的视觉下面的体现就是本来是晦涩的动画画面,当初变的不晦涩了。咱们下面讲过,动画其实是由很多图片形成。如果在一个24帧的电影中,忽然有一秒钟,在这一秒钟呈现了掉帧。也就是本来0…23的图片变成了 0…10…12…23.两头的某一帧没有渲染进去,那么这个在咱们视觉上就会呈现不晦涩的景象。也就是卡顿的景象。下面就是电影上呈现卡顿的景象。那么在咱们android零碎上呢?
Android渲染机制
在高刷手机没有呈现之前,咱们手机屏幕的帧率是60。就是意味着1秒钟会有60个画面呈现。那么也就是16ms就要有一个画面渲染。**Android零碎每隔16ms收回VSYNC信号,触发对UI进行渲染, 如果每次渲染都胜利,这样就可能达到晦涩的画面所须要的60帧,为了可能实现60fps,这意味着程序的大多数操作都必须在16ms内实现。如果超过了16ms那么可能就呈现丢帧的状况。**如果掉帧的频率很高,也就是导致卡顿的状况。
BlockCanary源码解析
那么在android中,BlockCanary
是怎么帮忙咱们去做卡顿检测的呢。明天咱们就来解说一下BlockCanary
检测卡顿的原理。
个别咱们都通过以下的代码形式去开启咱们的卡顿检测。
public class DemoApplication extends Application { @Override public void onCreate() { // ... // Do it on main process BlockCanary.install(this, new AppBlockCanaryContext()).start(); } }
这段代码次要有两局部,一部分是install,一部分是start。咱们先看install局部
install阶段
BlockCanary#install()
public static BlockCanary install(Context context, BlockCanaryContext blockCanaryContext) { //BlockCanaryContext.init会将保留利用的applicationContext和用户设置的配置参数 BlockCanaryContext.init(context, blockCanaryContext); //etEnabled将依据用户的告诉栏音讯配置开启 setEnabled(context, DisplayActivity.class, BlockCanaryContext.get().displayNotification()); return get(); }
BlockCanary#get()
//应用单例创立了一个BlockCanary对象 public static BlockCanary get() { if (sInstance == null) { synchronized (BlockCanary.class) { if (sInstance == null) { sInstance = new BlockCanary(); } } } return sInstance; }
BlockCanary()
private BlockCanary() { //初始化blockCanaryInternals调度类 BlockCanaryInternals.setContext(BlockCanaryContext.get()); mBlockCanaryCore = BlockCanaryInternals.getInstance(); //为BlockCanaryInternals增加拦截器(责任链)BlockCanaryContext对BlockInterceptor是空实现 mBlockCanaryCore.addBlockInterceptor(BlockCanaryContext.get()); if (!BlockCanaryContext.get().displayNotification()) { return; } //DisplayService只在开启告诉栏音讯的时候增加,当卡顿产生时将通过DisplayService发动告诉栏音讯 mBlockCanaryCore.addBlockInterceptor(new DisplayService()); }
BlockCanaryInternals.getInstance()
static BlockCanaryInternals getInstance() { if (sInstance == null) { synchronized (BlockCanaryInternals.class) { if (sInstance == null) { sInstance = new BlockCanaryInternals(); } } } return sInstance; }
BlockCanaryInternals
public BlockCanaryInternals() { //初始化栈采集器 stackSampler = new StackSampler( Looper.getMainLooper().getThread(), sContext.provideDumpInterval()); //初始化cpu采集器 cpuSampler = new CpuSampler(sContext.provideDumpInterval()); //初始化LooperMonitor,并实现了onBlockEvent的回调,该回调会在触发阈值后被调用,这外面比拟重要 setMonitor(new LooperMonitor(new LooperMonitor.BlockListener() { @Override public void onBlockEvent(long realTimeStart, long realTimeEnd, long threadTimeStart, long threadTimeEnd) { ArrayList<String> threadStackEntries = stackSampler .getThreadStackEntries(realTimeStart, realTimeEnd); if (!threadStackEntries.isEmpty()) { BlockInfo blockInfo = BlockInfo.newInstance() .setMainThreadTimeCost(realTimeStart, realTimeEnd, threadTimeStart, threadTimeEnd) .setCpuBusyFlag(cpuSampler.isCpuBusy(realTimeStart, realTimeEnd)) .setRecentCpuRate(cpuSampler.getCpuRateInfo()) .setThreadStackEntries(threadStackEntries) .flushString(); LogWriter.save(blockInfo.toString()); if (mInterceptorChain.size() != 0) { for (BlockInterceptor interceptor : mInterceptorChain) { interceptor.onBlock(getContext().provideContext(), blockInfo); } } } } }, getContext().provideBlockThreshold(), getContext().stopWhenDebugging())); LogWriter.cleanObsolete(); }
当install进行初始化实现后,接着会调用start()办法,实现如下:
start阶段
BlockCanary#start()
//BlockCanary#start() public void start() { if (!mMonitorStarted) { mMonitorStarted = true; //把mBlockCanaryCore中的monitor设置MainLooper中进行监听 Looper.getMainLooper().setMessageLogging(mBlockCanaryCore.monitor); } }
这外面的实现也比较简单,就是获取到主线程Looper而后将上一步创立的LooperMonitor设置到主线程Looper外面的MessageLogging。
到这里而后呢?卧槽,没了一开始看这里的源码的时候我也是很懵逼的。而后我就去github上看了,而后呢,我看到了这么一张图。
通过这张图,我能够晓得,真正开始检测的不是start(),而是Looper外面loop()函数
Looper#loop
public static void loop() { final Looper me = myLooper(); if (me == null) { throw new RuntimeException("No Looper; Looper.prepare() wasn't called on this thread."); } if (me.mInLoop) { Slog.w(TAG, "Loop again would have the queued messages be executed" + " before this one completed."); } me.mInLoop = true; final MessageQueue queue = me.mQueue; // Make sure the identity of this thread is that of the local process, // and keep track of what that identity token actually is. Binder.clearCallingIdentity(); final long ident = Binder.clearCallingIdentity(); // Allow overriding a threshold with a system prop. e.g. // adb shell 'setprop log.looper.1000.main.slow 1 && stop && start' final int thresholdOverride = SystemProperties.getInt("log.looper." + Process.myUid() + "." + Thread.currentThread().getName() + ".slow", 0); boolean slowDeliveryDetected = false; for (;;) { Message msg = queue.next(); // might block if (msg == null) { // No message indicates that the message queue is quitting. return; } // This must be in a local variable, in case a UI event sets the logger final Printer logging = me.mLogging; if (logging != null) { logging.println(">>>>> Dispatching to " + msg.target + " " + msg.callback + ": " + msg.what); } // Make sure the observer won't change while processing a transaction. final Observer observer = sObserver; final long traceTag = me.mTraceTag; long slowDispatchThresholdMs = me.mSlowDispatchThresholdMs; long slowDeliveryThresholdMs = me.mSlowDeliveryThresholdMs; if (thresholdOverride > 0) { slowDispatchThresholdMs = thresholdOverride; slowDeliveryThresholdMs = thresholdOverride; } final boolean logSlowDelivery = (slowDeliveryThresholdMs > 0) && (msg.when > 0); final boolean logSlowDispatch = (slowDispatchThresholdMs > 0); final boolean needStartTime = logSlowDelivery || logSlowDispatch; final boolean needEndTime = logSlowDispatch; if (traceTag != 0 && Trace.isTagEnabled(traceTag)) { Trace.traceBegin(traceTag, msg.target.getTraceName(msg)); } final long dispatchStart = needStartTime ? SystemClock.uptimeMillis() : 0; final long dispatchEnd; Object token = null; if (observer != null) { token = observer.messageDispatchStarting(); } long origWorkSource = ThreadLocalWorkSource.setUid(msg.workSourceUid); try { msg.target.dispatchMessage(msg); if (observer != null) { observer.messageDispatched(token, msg); } dispatchEnd = needEndTime ? SystemClock.uptimeMillis() : 0; } catch (Exception exception) { if (observer != null) { observer.dispatchingThrewException(token, msg, exception); } throw exception; } finally { ThreadLocalWorkSource.restore(origWorkSource); if (traceTag != 0) { Trace.traceEnd(traceTag); } } if (logSlowDelivery) { if (slowDeliveryDetected) { if ((dispatchStart - msg.when) <= 10) { Slog.w(TAG, "Drained"); slowDeliveryDetected = false; } } else { if (showSlowLog(slowDeliveryThresholdMs, msg.when, dispatchStart, "delivery", msg)) { // Once we write a slow delivery log, suppress until the queue drains. slowDeliveryDetected = true; } } } if (logSlowDispatch) { showSlowLog(slowDispatchThresholdMs, dispatchStart, dispatchEnd, "dispatch", msg); } if (logging != null) { logging.println("<<<<< Finished to " + msg.target + " " + msg.callback); } // Make sure that during the course of dispatching the // identity of the thread wasn't corrupted. final long newIdent = Binder.clearCallingIdentity(); if (ident != newIdent) { Log.wtf(TAG, "Thread identity changed from 0x" + Long.toHexString(ident) + " to 0x" + Long.toHexString(newIdent) + " while dispatching to " + msg.target.getClass().getName() + " " + msg.callback + " what=" + msg.what); } msg.recycleUnchecked(); } }
loop()外面的代码很长,咱们解说blockCanary的时候不须要过分关注其余局部,还记得咱们start做的事件吗,咱们去设置了setMessageLogging
。所以先看看setMessageLogging
办法
Looper#setMessageLogging
public void setMessageLogging(@Nullable Printer printer) { mLogging = printer; }
其实就是将创立的LooperMonitor
赋值给mLogging,那么咱们只须要关注mLogging在loop()中的代码就好了。咱们发现就是调用了两次println。一个是在msg.target.dispatchMessage(msg)
之前,一个是在msg.target.dispatchMessage(msg)
之后。也就是说这两次调用,一次是解决信号之前,一个是解决信号之后。那么通过实现LooperMonitor外面的println办法,咱们就能够得出一些时间差。所以,接下来咱们要看的是LooperMonitor外面的println办法
MainLooper#println()
//MainLooper#println() @Override public void println(String x) { //如果再debug模式,不执行监听 if (mStopWhenDebugging && Debug.isDebuggerConnected()) { return; } if (!mPrintingStarted) { //dispatchMesage前执行的println //记录开始工夫 mStartTimestamp = System.currentTimeMillis(); mStartThreadTimestamp = SystemClock.currentThreadTimeMillis(); mPrintingStarted = true; //开始采集栈及cpu信息 startDump(); } else { //dispatchMesage后执行的println //获取完结工夫 final long endTime = System.currentTimeMillis(); mPrintingStarted = false; //判断耗时是否超过阈值 if (isBlock(endTime)) { notifyBlockEvent(endTime); } stopDump(); } } //判断是否超过阈值 private boolean isBlock(long endTime) { return endTime - mStartTimestamp > mBlockThresholdMillis;//这个阈值是咱们本人设置的 } //如果超过阈值,回调卡顿的监听,阐明卡顿了 private void notifyBlockEvent(final long endTime) { final long startTime = mStartTimestamp; final long startThreadTime = mStartThreadTimestamp; final long endThreadTime = SystemClock.currentThreadTimeMillis(); HandlerThreadFactory.getWriteLogThreadHandler().post(new Runnable() { @Override public void run() { mBlockListener.onBlockEvent(startTime, endTime, startThreadTime, endThreadTime); } }); }
其实这里卡顿检测的源码也还是比较简单的,它的原理就是通过从新实现looper外面的logging,而后通过println函数去判断有没有呈现卡顿。BlockCanary的流程图在下面也呈现了。所以这篇博客也就写道这里吧。心愿对大家,对于卡顿的了解有肯定的帮忙。