• 欢迎访问搞代码网站,推荐使用最新版火狐浏览器和Chrome浏览器访问本网站!
  • 如果您觉得本站非常有看点,那么赶紧使用Ctrl+D 收藏搞代码吧

coursera Machine Learning Week3-2 学习笔记

mysql 搞代码 4年前 (2022-01-09) 18次浏览 已收录 0个评论

Part 7:Regularition 在机器学习中一个很重要的问题就是程序可能会产生overfitting的情况,什么是overfitting?just see below: overfitting就是程序针对所给出的训练集找到了一条曲线,能够把训练集几乎完美的分为2个部分,但是这条曲线过于复杂,并且失去

Part 7:Regularition

在机器学习中一个很重要的问题就是程序可能会产生overfitting的情况,什么是overfitting?just see below:

overfitting就是程序针对所给出的训练集找到了一条曲线,能够把训练集几乎完美的分为2个部分,但是这条曲线过于复杂,并且失去了对新的元组预测的准确度。这种情况是非常有可能出现的,因为在逻辑回归中,如果元组X的属性值很多,那么很有可能拟合出来的曲线就会非常的复杂。那么如何避免这样的情况的发生?视频中给出了2个方法,第一个就是降低数据的维度,选取少部分真正能代表数据特征的几个维度来进行逻辑回归的计算;第二个就是正规化(Regularition),保留所有的维度,但是降低参数θj的大小。这种方法具体的实现如下:

在原来的代价函数上增加了对于参数θj本身大小的影响,使得最后得出的参数θ的大小尽可能的小,这样就不会过分的放大每个属性对于最终的本文来源gaodai#ma#com搞@代~码^网+输出的影响而导致函数过于复杂化。然后我们将regularition应用到线性回归,代价函数上面已列出,下面列出使用梯度下降法时的更新公式(基本的公式不变,修改了一下求出偏导之后的公式):

使用最小二乘法时的公式:

至于将regularition应用到逻辑回归,基本和线性回归一致,不再重新给出具体的公式了。


搞代码网(gaodaima.com)提供的所有资源部分来自互联网,如果有侵犯您的版权或其他权益,请说明详细缘由并提供版权或权益证明然后发送到邮箱[email protected],我们会在看到邮件的第一时间内为您处理,或直接联系QQ:872152909。本网站采用BY-NC-SA协议进行授权
转载请注明原文链接:coursera Machine Learning Week3-2 学习笔记

喜欢 (0)
[搞代码]
分享 (0)
发表我的评论
取消评论

表情 贴图 加粗 删除线 居中 斜体 签到

Hi,您需要填写昵称和邮箱!

  • 昵称 (必填)
  • 邮箱 (必填)
  • 网址