一、Hystrix 是什么
在微服务架构中,我们将系统拆分成了若干弱小的单元,单元与单元之间通过HTTP或者TCP等方式相互访问,各单元的应用间通过服务注册与订阅的方式相互依赖。由于每个单元都在不同的进程中运行,依赖 远程调用
的方式执行,这样就可能引起因为网速变慢或者网络故障导致请求变慢或超时,若此时调用方的请求在不断增加,最后就会因等待出现故障的依赖方响应形成任本文来源gao@daima#com搞(%代@#码@网2务积压,最终导致自身服务的瘫痪。
Hystrix
是Netflix 中的一个组件库,它隔离了服务之间的访问点,阻止了故障节点之间可能会引起的雪崩效应,并提供了后备选项。
在微服务架构中,存在着许多的服务单元,若单一节点的故障,就很容易因为依赖关系而引发故障的蔓延,最终导致整个生态系统的瘫痪。为了解决这样的问题,产生了 断路器
等一系列的保护机制措施。
在 分布式架构中
,断路器模式的作用也是类似的,当某个服务单元发生故障(类似用电器发生短路)之后,通过断路器的故障监控(类似熔断保险丝),向调用方返回一个错误响应,而不是长时间的等待。这样就不会使得线程因调用故障服务被长时间占用不释放,避免了故障在分布式系统中的蔓延。
雪崩效应
雪崩效应就像是水滴石穿,蝴蝶效应一样,是指微小的事物随着时间的推移,会变得越来越巨大,从而对整个环境造成影响的现象。例如:在生态系统中,某一类物种的灭绝可能对整个生态系统造成不了太大的损失,但是这类物种的灭绝可能会引发其他物种的死亡,其他物种的灭绝又会影响另外一种物种的灭亡,就像雪球越滚越大,最终会导致整个生态系统的崩溃。
如上图所示:A作为服务提供者,B为A的服务消费者,C和D是B的服务消费者。A不可用引起了B的不可用,并将不可用像滚雪球一样放大到C和D时,雪崩效应就形成了。
雪崩效应产生场景
流量激增
: 比如异常流量,用户重试导致系统负载升高;
缓存刷新
: 假设A为 client 端,B为 Server 端,假设A系统请求都流向B系统,请求超出了B系统的承载能力,就会造成B系统崩溃
连接未释放
: 代码循环调用的逻辑问题,资源未释放引起的内存泄漏等问题;
硬件故障
: 比如宕机,机房断电等
线程同步等待
: 系统间经常采用同步服务调用模式,核心服务和非核心服务共用一个线程池和消息队列。如果一个核心业务线程调用非核心业务线程,这个非核心线程交由第三方系统完成,当第三方系统本身出现问题,导致核心线程阻塞,一直处于等待状态,而进程间的调用是有超时限制的,最终这条线程将断掉,也可能引发雪崩;
常见解决方案
针对上述的雪崩问题,每一条都有一个自己的解决方案,但是任何一个解决方案能够应对所有场景
- 针对流量激增,采用自动扩容以应对流量激增,或者在负载均衡器上安装限流模块
- 针对缓存刷新,参考Cache应用的服务过载案例研究
- 针对硬件故障,采用多机房灾备,跨机房路由
- 针对同步等待,采用线程隔离,熔断器等机制