这篇文章主要为大家详细介绍了C++实现有向图的邻接表表示,文中示例代码介绍的非常详细,具有一定的参考价值,感兴趣的小伙伴们可以参考一下
本文实例为大家分享了C++有向图的邻接表表示,供大家参考,具体内容如下
一、思路:
有向图的插入有向边、删除边、删除顶点和无向图的有区别。其他的和无向图的类似。
1.插入有向边
只需要插入边就行,不需要插入对称边
2.删除边:
只需要删除边就行,不需要仔找对称边进行删除。
3.删除顶点v:
首先,要在邻接表中删除以v为头的边;
同时,也要在邻接表中删除以v为尾的边, 不能通过对称边来找,只能一个个顶点找,浪费时间。
二、实现程序:
1.DirectedGraph.h:有向图
#ifndef DirectedGraph_h #define DirectedGraph_h #include using namespace std; const int DefaultVertices = 30; template struct Edge { // 边结点的定义 int dest; // 边的另一顶点位置 E cost; // 表上的权值 Edge *link; // 下一条边链指针 }; template struct Vertex { // 顶点的定义 T data; // 顶点的名字 Edge *adj; // 边链表的头指针 }; template class Graphlnk { public: const E maxValue = 100000; // 代表无穷大的值(=∞) Graphlnk(int sz=DefaultVertices); // 构造函数 ~Graphlnk(); // 析构函数 void inputGraph(); // 建立邻接表表示的图 void outputGraph(); // 输出图中的所有顶点和边信息 T getValue(int i); // 取位置为i的顶点中的值 E getWeight(int v1, int v2); // 返回边(v1, v2)上的权值 bool insertVertex(const T& vertex); // 插入顶点 bool insertEdge(int v1, int v2, E weight); // 插入边 bool removeVertex(int v); // 删除顶点 bool removeEdge(int v1, int v2); // 删除边 int getFirstNeighbor(int v); // 取顶点v的第一个邻接顶点 int getNextNeighbor(int v,int w); // 取顶点v的邻接顶点w的下一邻接顶点 int getVertexPos(const T vertex); // 给出顶点vertex在图中的位置 int numberOfVertices(); // 当前顶点数 private: int maxVertices; // 图中最大的顶点数 int numEdges; // 当前边数 int numVertices; // 当前顶点数 Vertex * nodeTable; // 顶点表(各边链表的头结点) }; // 构造函数:建立一个空的邻接表 template Graphlnk::Graphlnk(int sz) { maxVertices = sz; numVertices = 0; numEdges = 0; nodeTable = new Vertex[maxVertices]; // 创建顶点表数组 if(nodeTable == NULL) { cerr << "存储空间分配错误!" << endl; exit(1); } for(int i = 0; i <maxVertices; i++) nodeTable[i].adj = NULL; } // 析构函数 template Graphlnk::~Graphlnk() { // 删除各边链表中的结点 for(int i = 0; i <numVertices; i++) { Edge *p = nodeTable[i].adj; // 找到其对应链表的首结点 while(p != NULL) { // 不断地删除第一个结点 nodeTable[i].adj = p->link; delete p; p = nodeTable[i].adj; } } delete []nodeTable; // 删除顶点表数组 } // 建立邻接表表示的图 template void Graphlnk::inputGraph() { int n, m; // 存储顶点树和边数 int i, j, k; T e1, e2; // 顶点 E weight; // 边的权值 cout << "请输入顶点数和边数:" <> n >> m; cout << "请输入各顶点:" << endl; for(i = 0; i > e1; insertVertex(e1); // 插入顶点 } cout << "请输入图的各边的信息:" << endl; i = 0; while(i > e1 >> e2 >> weight; j = getVertexPos(e1); k = getVertexPos(e2); if(j == -1 || k == -1) cout << "边两端点信息有误,请重新输入!" << endl; else { insertEdge(j, k, weight); // 插入边 i++; } } // while } // 输出有向图中的所有顶点和边信息 template void Graphlnk::outputGraph() { int n, m, i; T e1, e2; // 顶点 E weight; // 权值 Edge *p; n = numV<b style="color:transparent">来源gao@dai!ma.com搞$代^码网</b>ertices; m = numEdges; cout << "图中的顶点数为" << n << ",边数为" << m << endl; for(i = 0; i <n; i++) { p = nodeTable[i].adj; while(p != NULL) { e1 = getValue(i); // 有向边<i>dest> e2 = getValue(p->dest); weight = p->cost; cout << "<" << e1 << ", " << e2 << ", " << weight <" <link; // 指向下一个邻接顶点 } } } // 取位置为i的顶点中的值 template T Graphlnk::getValue(int i) { if(i >= 0 && i <numVertices) return nodeTable[i].data; return NULL; } // 返回边(v1, v2)上的权值 template E Graphlnk::getWeight(int v1, int v2) { if(v1 != -1 && v2 != -1) { Edge *p = nodeTable[v1].adj; // v1的第一条关联的边 while(p != NULL && p->dest != v2) { // 寻找邻接顶点v2 p = p->link; } if(p != NULL) return p->cost; } return maxValue; // 边(v1, v2)不存在,就存放无穷大的值 } // 插入顶点 template bool Graphlnk::insertVertex(const T& vertex) { if(numVertices == maxVertices) // 顶点表满,不能插入 return false; nodeTable[numVertices].data = vertex; // 插入在表的最后 numVertices++; return true; } // 插入边 template bool Graphlnk::insertEdge(int v1, int v2, E weight) { if(v1 >= 0 && v1 = 0 && v2 <numVertices) { Edge *p = nodeTable[v1].adj; // v1对应的边链表头指针 while(p != NULL && p->dest != v2) // 寻找邻接顶点v2 p = p->link; if(p != NULL) // 已存在该边,不插入 return false; p = new Edge; // 创建新结点 p->dest = v2; p->cost = weight; p->link = nodeTable[v1].adj; // 链入v1边链表 nodeTable[v1].adj = p; numEdges++; return true; } return false; } // 有向图删除顶点较麻烦 template bool Graphlnk::removeVertex(int v) { if(numVertices == 1 || v numVertices) return false; // 表空或顶点号超出范围 Edge *p, *s; // 1.清除顶点v的边链表结点w 边 while(nodeTable[v].adj != NULL) { p = nodeTable[v].adj; nodeTable[v].adj = p->link; delete p; numEdges--; // 与顶点v相关联的边数减1 } // while结束 // 2.清除,与v有关的边 for(int i = 0; i dest != v) {// 在顶点i的链表中找v的顶点 s = p; p = p->link; // 往后找 } if(p != NULL) { // 找到了v的结点 if(s == NULL) { // 说明p是nodeTable[i].adj nodeTable[i].adj = p->link; } else { s->link = p->link; // 保存p的下一个顶点信息 } delete p; // 删除结点p numEdges--; // 与顶点v相关联的边数减1 } } } numVertices--; // 图的顶点个数减1 nodeTable[v].data = nodeTable[numVertices].data; // 填补,此时numVertices,比原来numVertices小1,所以,这里不需要numVertices-1 nodeTable[v].adj = nodeTable[numVertices].adj; // 3.要将填补的顶点对应的位置改写 for(int i = 0; i dest != numVertices) // 在顶点i的链表中找numVertices的顶点 p = p->link; // 往后找 if(p != NULL) // 找到了numVertices的结点 p->dest = v; // 将邻接顶点numVertices改成v } return true; } // 删除边 template bool Graphlnk::removeEdge(int v1, int v2) { if(v1 != -1 && v2 != -1) { Edge * p = nodeTable[v1].adj, *q = NULL; while(p != NULL && p->dest != v2) { // v1对应边链表中找被删除边 q = p; p = p->link; } if(p != NULL) { // 找到被删除边结点 if(q == NULL) // 删除的结点是边链表的首结点 nodeTable[v1].adj = p->link; else q->link = p->link; // 不是,重新链接 delete p; return true; } } return false; // 没有找到结点 } // 取顶点v的第一个邻接顶点 template int Graphlnk::getFirstNeighbor(int v) { if(v != -1) { Edge *p = nodeTable[v].adj; // 对应链表第一个边结点 if(p != NULL) // 存在,返回第一个邻接顶点 return p->dest; } return -1; // 第一个邻接顶点不存在 } // 取顶点v的邻接顶点w的下一邻接顶点 template int Graphlnk::getNextNeighbor(int v,int w) { if(v != -1) { Edge *p = nodeTable[v].adj; // 对应链表第一个边结点 while(p != NULL && p->dest != w) // 寻找邻接顶点w p = p->link; if(p != NULL && p->link != NULL) return p->link->dest; // 返回下一个邻接顶点 } return -1; // 下一个邻接顶点不存在 } // 给出顶点vertex在图中的位置 template int Graphlnk::getVertexPos(const T vertex) { for(int i = 0; i <numVertices; i++) if(nodeTable[i].data == vertex) return i; return -1; } // 当前顶点数 template int Graphlnk::numberOfVertices() { return numVertices; } #endif /* DirectedGraph_h */
2.main.cpp
/* 测试数据: 5 7 0 1 2 3 4 0 1 10 0 3 30 0 4 100 1 2 50 2 4 10 3 2 20 3 4 60 */ #include "DirectedGraph.h" int main(int argc, const char * argv[]) { Graphlnk st; // 声明对象 bool finished = false; int choice; char e1, e2, next; int weight; while(!finished) { cout << "[1]创建基于邻接表的有向图" << endl; cout << "[2]输出图的所有顶点和边信息" << endl; cout << "[3]取顶点v的第一个邻接顶点" << endl; cout << "[4]取v的邻接顶点w的下一个邻接顶点" << endl; cout << "[5]插入顶点" << endl; cout << "[6]插入边" << endl; cout << "[7]删除顶点" << endl; cout << "[8]删除边" << endl; cout << "[9]退出" << endl; cout <> choice; switch(choice) { case 1: st.inputGraph(); break; case 2: st.outputGraph(); break; case 3: cout <> e1; e2 = st.getValue(st.getFirstNeighbor(st.getVertexPos(e1))); if(e2) cout << "顶点" << e1 << "的第一个邻接顶点为:" << e2 << endl; else cout << "顶点" << e1 << "没有邻接顶点!" << endl; break; case 4: cout <> e1 >> e2; next = st.getValue(st.getNextNeighbor(st.getVertexPos(e1), st.getVertexPos(e2))); if(next) cout << "顶点" << e1 << "的邻接顶点" << e2 << "的下一个邻接顶点为:" << next << endl; else cout << "顶点" << e1 << "的邻接顶点" << e2 << "没有下一个邻接顶点!" << endl; break; case 5: cout <> e1; if(st.insertVertex(e1)) cout << "插入成功!" << endl; else cout << "表已满,插入失败!" << endl; break; case 6: cout << "请输入要插入的边的信息:" <> e1 >> e2 >> weight; st.insertEdge(st.getVertexPos(e1), st.getVertexPos(e2), weight); break; case 7: cout <> e1; if(st.removeVertex(st.getVertexPos(e1))) cout << "顶点" << e1 << "已删除!" << endl; else cout << "顶点" << e1 << "不在图中!" << endl; break; case 8: cout << "请输入要删除的边的两个端点:" <> e1 >> e2; st.removeEdge(st.getVertexPos(e1), st.getVertexPos(e2)); break; case 9: finished = true; break; default: cout << "选择输入错误,请重新输入!" << endl; } } return 0; }
测试结果:
以上就是C++实现有向图的邻接表表示的详细内容,更多请关注gaodaima搞代码网其它相关文章!