• 欢迎访问搞代码网站,推荐使用最新版火狐浏览器和Chrome浏览器访问本网站!
  • 如果您觉得本站非常有看点,那么赶紧使用Ctrl+D 收藏搞代码吧

Java 蒙特卡洛算法求圆周率近似值实例详解

java 搞代码 4年前 (2022-01-05) 34次浏览 已收录 0个评论

这篇文章主要介绍了蒙特卡洛算法的起源,特点,以及Java编程中利用蒙特卡洛算法计算圆周率近似值的实例,需要的朋友可以参考下

起源

 [1946: John von Neumann, Stan Ulam, and Nick Metropolis, all at the Los Alamos Scientific Laboratory, cook up the Metropolis algorithm, also known as the Monte Carlo method.]1946年,美国拉斯阿莫斯国家实验室的三位科学家John von Neumann,Stan Ulam 和 Nick Metropolis共同发明,被称为蒙特卡洛方法。它的具体定义是:在广场上画一个边长一米的正方形,在正方形内部随意用粉笔画一个不规则的形状,现在要计算这个不规则图形的面积,怎么计算列?蒙特卡洛(Monte Carlo)方法告诉我

来源gaodai.ma#com搞#代!码网

们,均匀的向该正方形内撒N(N 是一个很大的自然数)个黄豆,随后数数有多少个黄豆在这个不规则几何形状内部,比如说有M个,那么,这个奇怪形状的面积便近似于M/N,N越大,算出来的值便越精确。在这里我们要假定豆子都在一个平面上,相互之间没有重叠。(撒黄豆只是一个比喻。)

特点

蒙特卡洛方法的伟大之处,在于对精确性问题无法解决的时候,利用“模拟”的思想来求解。 在各个领域得以应用。本质是模拟(simulation): 利用大量随机输入,产生各种输出;结果的概率分布就是真实分布的“近似”。所以,输入的分布是否随机(目前计算机所能做的就是伪随机,并不能产生真正的随机分布),这个过程我们成为Sampling Random Variables。

计算圆周率近似值代码:

 package com.xu.main; import java.util.Scanner; public class P9_1 { static double MontePI(int n) { double PI; double x, y; int i, sum; sum = 0; for (i = 1; i <n; i++) { x = Math.random(); y = Math.random(); if ((x * x + y * y) <= 1) { sum++; } } PI = 4.0 * sum / n; return PI; } public static void main(String[] args) { int n; double PI; System.out.println("蒙特卡洛概率算法计算圆周率:"); Scanner input = new Scanner(System.in); System.out.println("输入点的数量:"); n = input.nextInt(); PI = MontePI(n); System.out.println("PI="+PI); } } 

输出:

 蒙特卡洛概率算法计算圆周率: 输入点的数量: 9999999 PI=3.1417975141797516 

总结

以上就是本文关于蒙特卡洛算法起源及特点的简介,还有如何利用这种算法思路在Java编程中求圆周率的近似值实例,希望对大家有所帮助。喜欢的朋友请继续关注gaodaima搞代码网

以上就是Java 蒙特卡洛算法求圆周率近似值实例详解的详细内容,更多请关注gaodaima搞代码网其它相关文章!


搞代码网(gaodaima.com)提供的所有资源部分来自互联网,如果有侵犯您的版权或其他权益,请说明详细缘由并提供版权或权益证明然后发送到邮箱[email protected],我们会在看到邮件的第一时间内为您处理,或直接联系QQ:872152909。本网站采用BY-NC-SA协议进行授权
转载请注明原文链接:Java 蒙特卡洛算法求圆周率近似值实例详解

喜欢 (0)
[搞代码]
分享 (0)
发表我的评论
取消评论

表情 贴图 加粗 删除线 居中 斜体 签到

Hi,您需要填写昵称和邮箱!

  • 昵称 (必填)
  • 邮箱 (必填)
  • 网址