• 欢迎访问搞代码网站,推荐使用最新版火狐浏览器和Chrome浏览器访问本网站!
  • 如果您觉得本站非常有看点,那么赶紧使用Ctrl+D 收藏搞代码吧

如何使用flask将模型部署为服务

python 搞代码 4年前 (2022-01-07) 16次浏览 已收录 0个评论

在某些场景下,我们需要将机器学习或者深度学习模型部署为服务给其它地方调用,本文接下来就讲解使用python的flask部署服务的基本过程。

1. 加载保存好的模型

为了方便起见,这里我们就使用简单的分词模型,相关代码如下:model.py

 import jieba class JiebaModel: def load_model(self): self.jieba_model = jieba.lcut def generate_result(self, text): return self.jieba_model(text, cut_all=False)

说明:在load_model方法中加载保存好的模型,无论是sklearn、tensorflow还是pytorch的都可以在里面完成。在generate_result方法中定义处理输入后得到输出的逻辑,并返回结果。

2. 使用flask起服务

代码如下:test_flask.py

 # -*-coding:utf-8-*- from flask import Flask, request, Response, abort from flask_cors import CORS # from ast import literal_eval import time import sys import json import traceback from model import JiebaModel app = Flask(__name__) CORS(app) # 允许所有路由上所有域使用CORS @app.route("/", methods=['POST', 'GET']) def inedx(): return '分词程序正在运行中' @app.route("/split_words", methods=['POST', 'GET']) def get_result(): if request.method == 'POST': text = request.data.decode("utf-8") else: text = request.args['text'] try: start = time.time() print("用户输入",text) res = jiebaModel.generate_result(text) end = time.time() print('分词耗时:', end-start) print('分词结果:', res) result = {'code':'200','msg':'响应成功','data':res} except Exception as e: print(e) result_error = {'errcode': -1} result = json.dumps(result_error, indent=4, ensure_ascii=False) # 这里用于捕获更详细的异常信息 exc_type, exc_value, exc_traceback = sys.exc_info() lines = traceback.format_exception(exc_type, exc_value, exc_traceback) # 提前退出请求 abort(Response("Failed!\n" + '\n\r\n'.join('' + line for line in lines))) return Response(str(result), mimetype='application/json') if __name__ == "__main__": jiebaModel = JiebaModel() jiebaModel.load_model() app.run(host='0.0.0.0', port=1314, threaded=False)

说明:我们定义了一个get_result()函数,对应的请求是ip:port/split_words。 首先我们根据请求是get请求还是post请求获取数据,然后使用模型根据输入数据得到输出结果,并返回响应给请求。如果遇到异常,则进行来源[email protected]搞@^&代*@码网相应的处理后并返回。在__main__中,我们引入了model.py的JiebaModel类,然后加载了模型,并在get_result()中调用。

3. 发送请求并得到结果

代码如下:test_request.py

 import requests def get_split_word_result(text): res = requests.post('http://{}:{}/split_words'.format('本机ip', 1314), data=str(text).encode('utf-8')) print(res.text) get_split_word_result("我爱北京天安门")

说明:通过requests发送post请求,请求数据编码成utf-8的格式,最后得到响应,并利用.text得到结果。

4. 效果呈现

(1)运行test_flask.py

(2)运行test_request.py

并在起服务的位置看到:

以上就是如何使用flask将模型部署为服务的详细内容,更多关于用flask将模型部署为服务的资料请关注gaodaima搞代码网其它相关文章!

以上就是如何使用flask将模型部署为服务的详细内容,更多请关注gaodaima搞代码网其它相关文章!


搞代码网(gaodaima.com)提供的所有资源部分来自互联网,如果有侵犯您的版权或其他权益,请说明详细缘由并提供版权或权益证明然后发送到邮箱[email protected],我们会在看到邮件的第一时间内为您处理,或直接联系QQ:872152909。本网站采用BY-NC-SA协议进行授权
转载请注明原文链接:如何使用flask将模型部署为服务

喜欢 (0)
[搞代码]
分享 (0)
发表我的评论
取消评论

表情 贴图 加粗 删除线 居中 斜体 签到

Hi,您需要填写昵称和邮箱!

  • 昵称 (必填)
  • 邮箱 (必填)
  • 网址