import torch
import torch.nn as nn
import torch.optim as optim
from torchvision import datasets, transforms
from torch.utils.data import DataLoader
下载训练集
train_dataset = datasets.MNIST(root=’./’,
train=True, transform=transforms.ToTensor(), download=True)
下载测试集
test_dataset = datasets.MNIST(root=’./’,
train=False, transform=transforms.ToTensor(), download=True)
批次大小
batch_size = 64
装载训练集
train_loader = DataLoader(dataset=train_dataset,
batch_size=batch_size, shuffle=True)
装载测试集
test_loader = DataLoader(dataset=test_dataset,
batch_size=batch_size, shuffle=True)
for i, data in enumerate(train_loader):
# 取得数据和对应的标签 inputs, labels = data print(inputs.shape) print(labels.shape) break
定义网络结构
class Net(nn.Module):
def __init__(self): super(Net, self).__init__() # 卷积层1 # Conv2d 参数1:[金属期货](https://www.gendan5.com/cf/mf.html)输出通道数,黑白图片为1,黑白为3 参数2:输入通道数,生成32个特色图 参数3:5*5卷积窗口 参数4:步长1 参数5:padding补2圈0(3*3卷积窗口填充1圈0,5*5填充2圈0) # 应用ReLU激活函数 池化窗口大小2*2,步长2 self.conv1 = nn.Sequential(nn.Conv2d(1, 32, 5, 1, 2), nn.ReLU(), nn.MaxPool2d(2, 2)) # 卷积层2 输出32个特色图 输入64个特色图 self.conv2 = nn.Sequential(nn.Conv2d(32, 64, 5, 1, 2), nn.ReLU(), nn.MaxPool2d(2, 2)) # 全连贯层1 输出64*7*7(原先为28,每次池化/2),1000 self.fc1 = nn.Sequential(nn.Linear(64 * 7 * 7, 1000), nn.Dropout(p=0.4), nn.ReLU()) # 全连贯层2 输入10个分类,并转化为概率 self.fc2 = nn.Sequential(nn.Linear(1000, 10), nn.Softmax(dim=1)) def forward(self, x): # 卷积层应用4维的数据 # 批次数量64 黑白1 图片大小28*28 # ([64, 1, 28, 28]) x = self.conv1(x) x = self.conv2(x) # 全连贯层对2维数据进行计算 x = x.view(x.size()[0], -1) x = self.fc1(x) x = self.fc2(x) return x
LR = 0.0003
定义模型
model = Net()
定义代价函数
entropy_loss = nn.CrossEntropyLoss()
定义优化器
optimizer = optim.Adam(model.parameters(), LR)
def train():
model.train() for i, data in enumerate(train_loader): # 取得数据和对应的标签 inputs, labels = data # 取得模型预测后果,(64,10) out = model(inputs) # 穿插熵代价函数out(batch,C),labels(batch) loss = entropy_loss(out, labels) # 梯度清0 optimizer.zero_grad() # 计算梯度 loss.backward() # 修改权值 optimizer.step()
def test():
model.eval() correct = 0 for i, data in enumerate(test_loader): # 取得数据和对应的标签 inputs, labels = data # 取得模型预测后果 out = model(inputs) # 取得最大值,以及最大值所在的地位 _, predicted = torch.max(out, 1) # 预测正确的数量 correct += (predicted == labels).sum() print("Test acc: {0}".format(correct.item() / len(test_dataset))) correct = 0 for i, data in enumerate(train_loader): # 取得数据和对应的标签 inputs, labels = data # 取得模型预测后果 out = model(inputs) # 取得最大值,以及最大值所在的地位 _, predicted = torch.max(out, 1) # 预测正确的数量 correct += (predicted == labels).sum() print("Train acc: {0}".format(correct.item() / len(train_dataset)))
for epoch in range(0, 10):
print('epoch:', epoch) train() test()