• 欢迎访问搞代码网站,推荐使用最新版火狐浏览器和Chrome浏览器访问本网站!
  • 如果您觉得本站非常有看点,那么赶紧使用Ctrl+D 收藏搞代码吧

topicmodel-LDA1

mysql 搞代码 4年前 (2022-01-09) 10次浏览 已收录 0个评论

step1 : install gensim step 2 :Corpora and Vector Spaces 将用字符串表示的文档转换为用id表示的文档向量: documents = [Human machine interface for lab abc computer applications, A survey of user opinion of computer system response time, The E

step1 : install gensim

step 2 :Corpora and Vector Spaces

将用字符串表示的文档转换为用id表示的文档向量:

documents = ["Human machine interface for lab abc computer applications",    "A survey of user opinion of computer system response time",    "The EPS user interface management system",    "System and human system engineering testing of EPS",    "Relation of user perceived response time to error measurement",  <i>本文来源gaodai$ma#com搞$代*码网2</i>  "The generation of random binary unordered trees",    "The intersection graph of paths in trees",    "Graph minors IV Widths of trees and well quasi ordering",    "Graph minors A survey"]"""#use StemmedCountVectorizer to get stemmed without stop words corpusVectorizer = StemmedCountVectorizer# Vectorizer = CountVectorizervectorizer = Vectorizer(stop_words='english')vectorizer.fit_transform(documents)texts = vectorizer.get_feature_names()# print(texts)"""texts = [doc.lower().split() for doc in documents]# print(texts)dict = corpora.Dictionary(texts)    #自建词典# print dict, dict.t【本文来自鸿网互联 (http://www.68idc.cn)】oken2id#通过dict将用字符串表示的文档转换为用id表示的文档向量corpus = [dict.doc2bow(text) for text in texts]print(corpus)

搞代码网(gaodaima.com)提供的所有资源部分来自互联网,如果有侵犯您的版权或其他权益,请说明详细缘由并提供版权或权益证明然后发送到邮箱[email protected],我们会在看到邮件的第一时间内为您处理,或直接联系QQ:872152909。本网站采用BY-NC-SA协议进行授权
转载请注明原文链接:topicmodel-LDA1
喜欢 (0)
[搞代码]
分享 (0)
发表我的评论
取消评论

表情 贴图 加粗 删除线 居中 斜体 签到

Hi,您需要填写昵称和邮箱!

  • 昵称 (必填)
  • 邮箱 (必填)
  • 网址