• 欢迎访问搞代码网站,推荐使用最新版火狐浏览器和Chrome浏览器访问本网站!
  • 如果您觉得本站非常有看点,那么赶紧使用Ctrl+D 收藏搞代码吧

keras中的深度可分离卷积 SeparableConv2D与DepthwiseConv2D

【时间】2019.03.15

【题目】keras中的深度可分离卷积 SeparableConv2D与DepthwiseConv2D

概述

keras中的深度可分离卷积有SeparableConv2D与c两种,

其中SeparableConv2D实现整个深度分离卷积过程,即深度方向的空间卷积 (分别作用于每个输入通道)+ 输出通道混合在一起的逐点卷积,

而DepthwiseConv2D仅仅实现前半部分的空间卷积 (分别作用于每个输入通道)。

下面是keras中文文档的内容。

一、SeparableConv2D

深度方向的可分离 2D 卷积。

可分离的卷积的操作包括,首先执行深度方向的空间卷积 (分别作用于每个输入通道),紧接一个将所得输出通道 混合在一起的逐点卷积。depth_multiplier 参数控 制深度步骤中每个输入通道生成多少个输出通道。

直观地说,可分离的卷积可以理解为一种将卷积核分解成 两个较小的卷积核的方法,或者作为 Inception 块的 一个极端版本。

参数

filters: 整数,输出空间的维度 (即卷积中滤波器的输出数量)。
kernel_size: 一个整数,或者 2 个整数表示的元组或列表, 指明 2D 卷积窗口的高度和宽度。 可以是一个整数,为所有空间维度指定相同的值。
strides: 一个整数,或者 2 个整数表示的元组或列表, 指明卷积沿高度和宽度方向的步长。 可以是一个整数,为所有空间维度指定相同的值。 指定任何 stride 值 != 1 与指定 dilation_rate值 != 1 两者不兼容。
padding: “valid” 或 “same” (大小写敏感)。
data_format: 字符串, channels_last (默认) 或 channels_first 之一,表示输入中维度的顺序。channels_last 对应输入尺寸为 (batch, height, width, channels), channels_first 对应输入尺寸为 (batch, channels, height, width)。 它默认为从 Keras 配置文件 ~/.keras/keras.json 中 找到的 image_data_format 值。 如果你从未设置它,将使用「channels_last」。
dilation_rate: 一个整数,或者 2 个整数表示的元组或列表, 为使用扩张(空洞)卷积指明扩张率。 目前,指定任何 dilation_rate 值 != 1 与指定任何 stride 值 != 1 两者不兼容。
depth_multiplier: 每个输入通道的深度方向卷积输出通道的数量。 深度方向卷积输出通道的总数将等于 filterss_in * depth_multiplier。
activation: 要使用的**函数 (详见 activations)。 如果你不指定,则不使用**函数 (即线性**: a(x) = x)。
use_bias: 布尔值,该层是否使用偏置向量。
depthwise_initializer: 运用到深度方向的核矩阵的初始化器 详见 initializers)。
pointwise_initializer: 运用到逐点核矩阵的初始化器 (详见 initializers)。
bias_initializer: 偏置向量的初始化器 (详见 initializers)。
depthwise_regularizer: 运用到深度方向的核矩阵的正则化函数 (详见 regularizer)。
pointwise_regularizer: 运用到逐点核矩阵的正则化函数 (详见 regularizer)。
bias_regularizer: 运用到偏置向量的正则化函数 (详见 regularizer)。
activity_regularizer: 运用到层输出(它的**值)的正则化函数 (详见 regularizer)。
depthwise_constraint: 运用到深度方向的核矩阵的约束函数 (详见 constraints)。
pointwise_constraint: 运用到逐点核矩阵的约束函数 (详见 constraints)。
bias_constraint: 运用到偏置向量的约束函数 (详见 constraints)。

输入尺寸

如果 data_format=’channels_first’, 输入 4D 张量,尺寸为 (batch, channels, rows, cols)。
如果 data_format=’channels_last’, 输入 4D 张量,尺寸为 (batch, rows, cols, channels)。
输出尺寸

如果 data_format=’channels_first’, 输出 4D 张量,尺寸为 (batch, filters, new_rows, new_cols)。
如果 data_format=’channels_last’, 输出 4D 张量,尺寸为 (batch, new_rows, new_cols, filters)。
由于填充的原因, rows 和 cols 值可能已更改。

二、DepthwiseConv2D

深度可分离 2D 卷积。

深度可分离卷积包括仅执行深度空间卷积中的第一步(其分别作用于每个输入通道)。 depth_multiplier 参数控制深度步骤中每个输入通道生成多少个输出通道。

Arguments

kernel_size: 一个整数,或者 2 个整数表示的元组或列表, 指明 2D 卷积窗口的高度和宽度。 可以是一个整数,为所有空间维度指定相同的值。
strides: 一个整数,或者 2 个整数表示的元组或列表, 指明卷积沿高度和宽度方向的步长。 可以是一个整数,为所有空间维度指定相同的值。 指定任何 stride 值 != 1 与指定 dilation_rate值 != 1 两者不兼容。
padding: “valid” 或 “same” (大小写敏感)。
depth_multiplier: 每个输入通道的深度方向卷积输出通道的数量。 深度方向卷积输出通道的总数将等于 filterss_in * depth_multiplier。
data_format: 字符串, channels_last (默认) 或 channels_first 之一,表示输入中维度的顺序。channels_last 对应输入尺寸为 (batch, height, width, channels), channels_first 对应输入尺寸为 (batch, channels, height, width)。 它默认为从 Keras 配置文件 ~/.keras/keras.json 中 找到的 image_data_format 值。 如果你从未设置它,将使用「channels_last」。
activation: 要使用的**函数 (详见 activations)。 如果你不指定,则不使用**函数 (即线性**: a(x) = x)。
use_bias: 布尔值,该层是否使用偏置向量。
depthwise_initializer: 运用到深度方向的核矩阵的初始化器 详见 initializers)。
bias_initializer: 偏置向量的初始化器 (详见 initializers)。
depthwise_regularizer: 运用到深度方向的核矩阵的正则化函数 (详见 regularizer)。
bias_regularizer: 运用到偏置向量的正则化函数 (详见 regularizer)。
activity_regularizer: 运用到层输出(它的**值)的正则化函数 (详见 regularizer)。
depthwise_constraint: 运用到深度方向的核矩阵的约束函数 (详见 constraints)。
bias_constraint: 运用到偏置向量的约束函数 (详见 constraints)。

输入尺寸
如果 data_format=’channels_first’, 输入 4D 张量,尺寸为 (batch, channels, rows, cols)。
如果 data_format=’channels_last’, 输入 4D 张量,尺寸为 (batch, rows, cols, channels)。
输出尺寸
如果 data_format=’channels_first’, 输出 4D 张量,尺寸为 (batch, filters, new_rows, new_cols)。
如果 data_format=’channels_last’, 输出 4D 张量,尺寸为 (batch, new_rows, new_cols, filters)。
由于填充的原因, rows 和 cols 值可能已更改。


喜欢 (0)
[搞代码]
分享 (0)
发表我的评论
取消评论

表情 贴图 加粗 删除线 居中 斜体 签到

Hi,您需要填写昵称和邮箱!

  • 昵称 (必填)
  • 邮箱 (必填)
  • 网址