作为zset的底层实现之一(另一个是dict),今天来扯扯zskiplist(跳跃表)这个东西,至于zset是怎么利用这两个东西的,咱们之后再表,这次只是说说跳跃表的实现。
跳跃表是一种有序的数据结构,它通过在每个节点中存放多个指向其他节点的指针(正向的指针>=1个,反向的指针就一个)来达到快速访问节点的目的。在redis当中,其代码定义如下:
typedef struct zskiplistNode { sds ele; double score; struct zskiplistNode *backward; struct zskiplistLevel { struct zskiplistNode *forward; unsigned int span; } level[]; } zskiplistNode; typedef struct zskiplist { struct zskiplistNode *header, *tail; unsigned long length; int level; } zskiplist; #define ZSKIPLIST_MAXLEVEL 32 /* Should be enough for 2^32 elements */ #define ZSKIPLIST_P 0.25 /* Skiplist P = 1/4 */
先来说说zskiplistNode结构:
字段名称 | 含义 |
ele | 当前节点存储的元素 |
score | 当前节点存储的元素的得分 |
level[] | 当前节点向前遍历时的指针数组,数组中的每个元素包含两个属性:1). 可以到达的节点指针forward;2). 该节点与当前节点的距离span,span用于计算forward节点在当前zskiplist当中的排名,而非用于遍历。 |
backward | 当前节点向后遍历时的指针。注意这里不是数组,也就是说反向遍历只能从后往前一个一个来~~~ |
之后是zskiplist结构
字段名称 | 含义 |
header | 指向跳跃表的头结点的指针 |
tail | 指向跳跃表的尾节点的指针 |
length | 跳跃表的长度,即当前跳跃表包含的节点数目(头结点不包含在内) |
level | 跳跃表中,level数组中元素最多的那个节点的level数组的元素个数(头结点不包含在内) |
zskiplist结构当中需要多说一下的就是为什么length和level字段没有包括头结点?原因在于当创建一个zskiplist的时候,会直接把头结点设置成最大level,以便后续操作,其创建代码如下所示:
/* Create a new skiplist. */ zskiplist *zslCreate(void) { int j; zskiplist *zsl; zsl = zmalloc(sizeof(*zsl)); zsl->level = 1; zsl->length = 0; zsl->header = zslCreateNode(ZSKIPLIST_MAXLEVEL,0,NULL); for (j = 0; j < ZSKIPLIST_MAXLEVEL; j++) { zsl->header->level[j].forward = NULL; zsl->header->level[j].span = 0; } zsl->header->backward = NULL; zsl->tail = NULL; return zsl; }
至于对zskiplist的操作方面,个人觉得还是得推插入和删除了
由于zskiplist当中不允许存在相同的sds,这一保障性工作交由调用插入操作的调用者来保证~
插入的时候需要注意的就是它是以level从大到小的顺序来遍历并更新各个指针的,详情见代码:
/* Insert a new node in the skiplist. Assumes the element does not already * exist (up to the caller to enforce that). The skiplist takes ownership * of the passed SDS string 'ele'. */ zskiplistNode *zslInsert(zskiplist *zsl, double score, sds ele) { zskiplistNode *update[ZSKIPLIST_MAXLEVEL], *x; unsigned int rank[ZSKIPLIST_MAXLEVEL]; int i, level; serverAssert(!isnan(score)); x = zsl->header; // 确定每一个level当中由那一个节点来指向新插入的节点,并记录span for (i = zsl->level-1; i >= 0; i--) { /* store rank that is crossed to reach the insert position */ rank[i] = i == (zsl->level-1) ? 0 : rank[i+1]; while (x->level[i].forward && (x->level[i].forward->score < score || (x->level[i].forward->score == score && sdscmp(x->level[i].forward->ele,ele) < 0))) { rank[i] += x->level[i].span; x = x->level[i].forward; } update[i] = x; } /* we assume the element is not already inside, since we allow duplicated * scores, reinserting the same element should never happen since the * caller of zslInsert() should test in the hash table if the element is * already inside or not. */ level = zslRandomLevel(); // 如果超出level,则更新span if (level > zsl->level) { for (i = zsl->level; i < level; i++) { rank[i] = 0; update[i] = zsl->header; update[i]->level[i].span = zsl->length; } zsl->level = level; } // 创建并插入节点 x = zslCreateNode(level,score,ele); for (i = 0; i < level; i++) { x->level[i].forward = update[i]->level[i].forward; update[i]->level[i].forward = x; /* update span covered by update[i] as x is inserted here */ x->level[i].span = update[i]->level[i].span - (rank[0] - rank[i]); update[i]->level[i].span = (rank[0] - rank[i]) + 1; } /* increment span for untouched levels */ for (i = level; i < zsl->level; i++) { update[i]->level[i].span++; } x->backward = (update[0] == zsl->header) ? NULL : update[0]; if (x->level[0].forward) x->level[0].forward->backward = x; else zsl->tail = x; zsl->length++; return x; }
zskiplistNode创建的时候会随机生成一个介于1和32之间的数来决定level数组的大小,这个数的生成遵循“越大的数出现的概率越小”这一原则,代码如下:
int zslRandomLevel(void) { int level = 1; while ((random()&0xFFFF) < (ZSKIPLIST_P * 0xFFFF)) level += 1; return (level<ZSKIPLIST_MAXLEVEL) ? level : ZSKIPLIST_MAXLEVEL; }
节点的删除工作就比较的中规中矩了
/* Internal function used by zslDelete, zslDeleteByScore and zslDeleteByRank */ void zslDeleteNode(zskiplist *zsl, zskiplistNode *x, zskiplistNode **update) { int i; for (i = 0; i < zsl->level; i++) { if (update[i]->level[i].forward == x) { update[i]->level[i].span += x->level[i].span - 1; update[i]->level[i].forward = x->level[i].forward; } else { update[i]->level[i].span -= 1; } } if (x->level[0].forward) { x->level[0].forward->backward = x->backward; } else { zsl->tail = x->backward; } while(zsl->level > 1 && zsl->header->level[zsl->level-1].forward == NULL) zsl->level--; zsl->length--; }